Investigation of Speciation in III-V Wet Etching to Mitigate Hazardous Product Formation

(*Task Number: 425.049*)

PIs:

- Anthony Muscat, Chemical and Environmental Engineering, UA
- Srini Raghavan, Materials Science and Engineering, UA

Graduate Students:

- Jimmy Hackett, PhD Student, Chemical and Environmental Engineering, UA
- Bing Wu, PhD Student, Chemical and Environmental Engineering, UA

Other Researchers:

• Tim Corley, Hydrology and Water Resources

Cost Share (other than core ERC funding):

•

Objectives

- III-V materials allow for manufacturing beyond the limits of silicon.
- Predict the species produced by wet etching III-V semiconductors.
 - Use thermodynamics of liquid phase solutions.
 - Vary pH, molarity, solution chemistry.

- Validate speciation at select process conditions.
 - Measure gas and liquid phases.
 - Mass balance on Ga and In.
 - Total
 - Species
 - Scale bench top experiments to full wafer.
 - Start with aqueous solutions of HCl and H_2O_2 .

ESH Metrics and Impact

Marker	Max 30 day average	Source
Total Toxic Organics	1.37 mg/l	40 CFR 469.24
Arsenic	0.83 mg/l	40 CFR 469.24
рН	6-9	40 CFR 469.24

Compound	Exposure	Hazard
In ₂ O ₃ , In(OH) ₃	Inhalation via Occupational Exposure	Lung Cancer, Pulmonary Alveolar Proteinosis, Emphysema
AsH ₃	Chronic Exposure >0.05 ppm	Anemia, Cardiovascular Disease, Peripheral Neuropathy

Cummings, Kristin J. et al. "Indium Lung Disease." Chest 141.6 (2012): 1512–1521. PMC. Web. 28 Mar. 2015.

Arsine; MSDS No. P-4565-J [online]; Praxair: Danbury Ct, March 23, 2015

III-V Wet Etching

- Define concentrations of all reaction products as function of processing conditions including waste disposal.
 - $[H_2O_2] = 0.0001 8 M$
 - [HCl] = 0.01-2 M
- Scale species concentrations in gas and liquid phase to identify potential situations that do not meet regulations.
 - Limitations of current hydride sensors.
 - Reports of 97-99% recovery of indium using MRT gels.

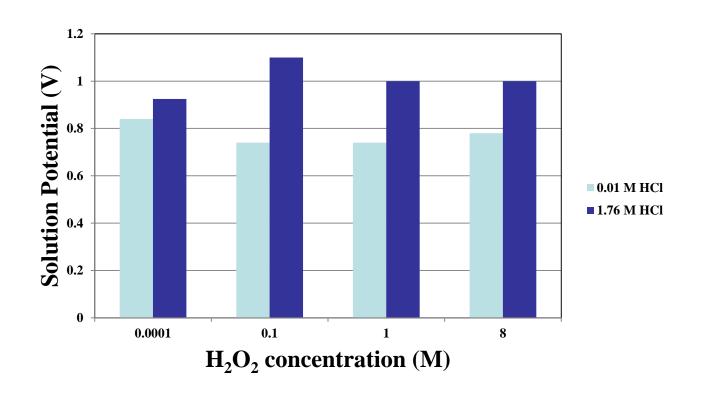
Approach

- Use thermodynamics to identify the species to expect in the gas and liquid phases for different pairings of III-V material and etching chemistry.
- Close a mass balance on the etching process by measuring total masses of group III and V atoms in gas and liquid.
- Measure partitioning of species in gas and liquid for different pairings of III-V material and etching chemistry.
 - Especially important to measure In in aqueous phase to determine whether both chloride and hydroxide present.

Thermodynamic Modeling

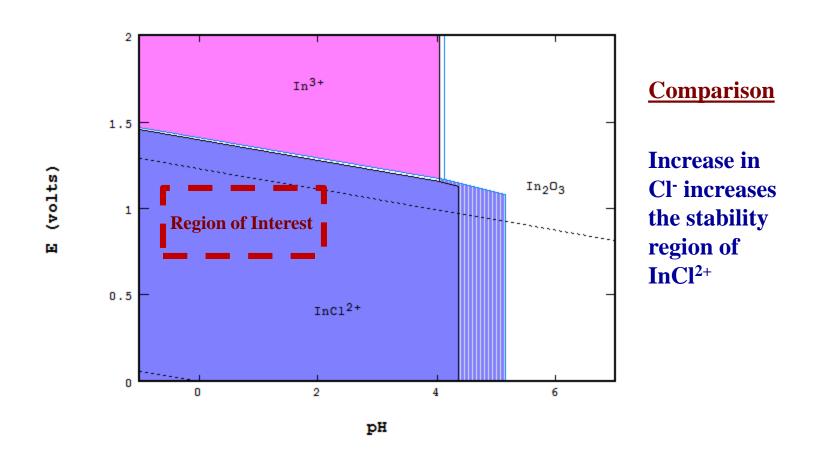
- Software packages used to predict speciation.
 - PHREEQCi
 - Designed by USGS for aqueous systems.
 - STABCAL
 - Commercial
- Both software packages make use of thermodynamic databases or manually entered parameters.
- Validate with experiments.
- Use to guide selection of techniques to measure species concentration.

Example HCl and H₂O₂ System

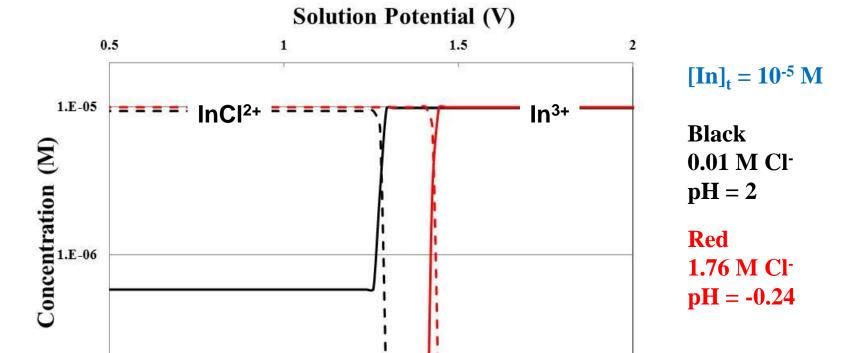

- HCl (0.01-1.76~M) and $H_2O_2~(1.0~E-4-8~M)$ based solutions are commonly used for etching III-V materials.
 - Characterized by a redox potential in the range of 0.70 1.1 V.
- Potential-pH (Pourbaix) diagrams were constructed for the following conditions.

```
[In] = 1.0 E-5 M; [Cl<sup>-</sup>] = 0.01 or 1.76 M
pH range of -1 to 7
Potential range of 0 – 2 V
```

• Distribution-potential diagrams were constructed for the following conditions.

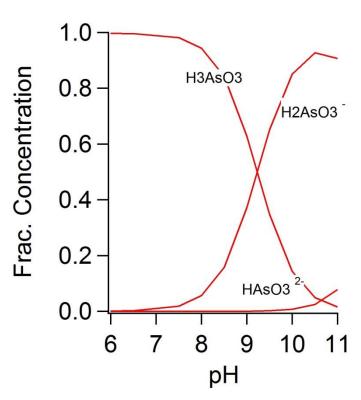

```
[In] = 1.0 E-5 M; pH=2 or -0.24
Potential range of 0-2 V
```

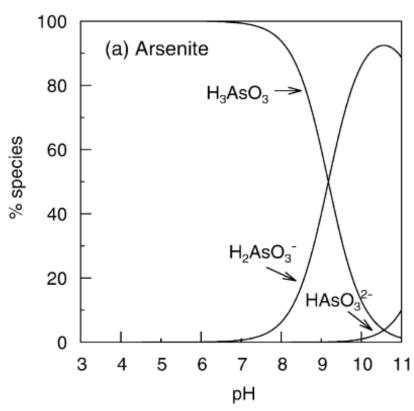
Solution Potential as a Function of H₂O₂ Concentration



Potential-pH Diagrams

<u>In (10⁻⁵ M) – Cl⁻ (0.01 or 1.76 M) – Water System</u>

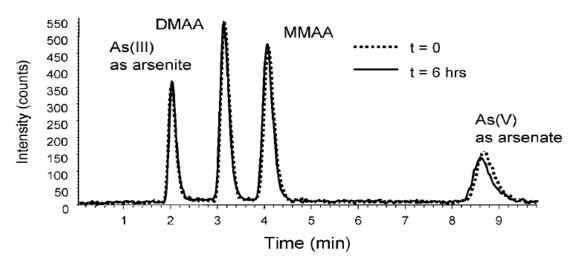

Distribution of Indium Species as a Function of Solution Potential


InOH²⁺

1.E-07

Arsenic Distribution in PHREEQCi

 Good agreement between PHREEQCi and diagram from literature.

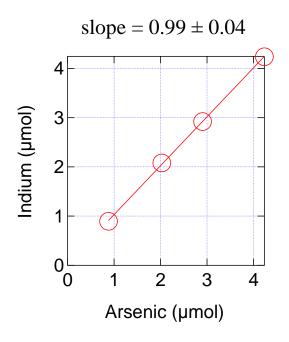

Smedley, P.I, and D.g Kinniburgh. "A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters." Applied Geochemistry 17.5 (2002): 517-68. Web.

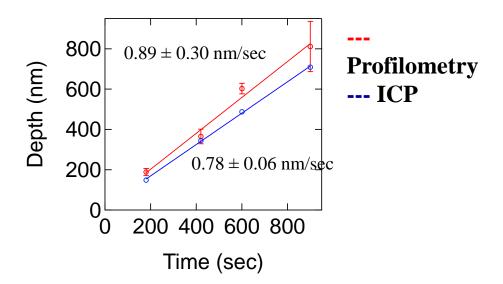
Species Monitored in Vapor and Liquid Phases

Equipment	Purpose	Detection Range
Differentially Pumped Mass-Spec	Vapor Phase Detection	> 1 ppt sensitivity
ICP-MS	Liquid Phase Detection	< 10 µg/l
ICP-OES	Liquid Phase Detection	> 10 µg/l

Measurement Example

Compound	Phase	Detection Method
Aqueous As(III), As(V) species	Liquid	HPLC-ICP-MS
AsH ₃	Vapor	ICP-MS FTIR: 2115.2, 906.75, 1126.42, 999.22 cm ⁻¹




Day, Jason A et al. "A Study of Method Robustness for Arsenic Speciation in Drinking Water Samples by Anion Exchange HPLC-ICP-MS." *Analytical and Bioanalytical Chemistry* 373.7 (2002): 664-68. Web.

Total Mass Balance Experiment

- InAs (100)
 - 1x1 cm² samples patterned and unpatterned
- Etching rate
 - Unpatterned
 - Timed submersion in aq. [HCl]=0.01 M and $[H_2O_2]=0.1$ M.
 - Aliquots removed at discrete time intervals and analyzed by ICP-MS.
 - No gas phase data.
 - Patterned
 - Etch, remove photoresist, and measure amount etched by profilometry.

Total Mass Balance and Etching Rate

1:1 In to As stoichiometry in solution suggests all species remain in liquid phase.

InAs(100) etching rate (nm/s) based on profilometry and ICP-MS agrees.

Conclusions

- InCl²⁺ species stable in solution based on thermodynamic model at concentrations and solution potentials of interest.
- Closed total mass balance on InAs(100) etching reaction based on close comparison of profilometry and ICP-MS etching rate data.
- In/As = 1:1 in solution suggests all species remain in liquid.

Future Work

- Develop thermodynamic calculations.
 - Expand databases for use in both PHREEQCi and STABCAL.
 - Replicate simulations in both sets of software to ensure continuity between programs.
 - Extend to binary systems
- Start speciation experiments.
 - Complete differentially-pumped mass spec to measure gas phase species.
 - Develop liquid phase separation procedures for III-V etching products.

Industrial Interactions and Technology Transfer

Industrial liaisons:

Reed Content, Global EHS, Global Foundries, Santa Clara, CA

Brian Raley, Global EHS, Global Foundries, Austin, TX

David Speed, Microelectronics, IBM, Hopewell Junction, NY