<u>Lowering the Environmental Impact of High-k and</u> <u>Metal Gate-Stack Surface Preparation Processes</u>

(Task Number: 425.028)

<u>**PIs:**</u>

- Yoshio Nishi, Electrical Engineering, Stanford University
- Srini Raghavan, Materials Science and Engineering, University of Arizona
- Bert Vermeire, Electrical Engineering, Arizona State University
- Farhang Shadman, Chemical Engineering, University of Arizona

Research Scientists:

- Manish Keswani, Materials Science and Engineering, University of Arizona
- Jun Yan, Chemical Engineering, University of Arizona
- Omid Mahdavi, Micro/Nano Fabrication Center, University of Arizona

Graduate Students:

- Kedar Dhane, graduated; currently with Intel
- Gaurav Thareja, Electrical Engineering, Stanford University
- Davoud Zamani, Chemical Engineering, University of Arizona

Cost Share (other than core ERC funding):

- \$50k from Stanford CIS
- \$20k from WSP

Objectives

- Development of a wet etch method to minimize fluoride consumption during etching of hafnium based high-k materials
- Significant reduction of water and energy usage during rinse
- Validation of low-resource usage processes using metal-high-k device fabrication and electrical characterization.

Subtasks 1 and 2

- A wet etch method to reduce fluoride consumption during etching of high-k
- Reduction of water and energy usage for rinse after high-k etch

ESH Metrics and Impact

- Reduction in the usage of HF; reduce the ESH impact of etch chemistries for hafnium based high-k materials
- Significant reduction in water usage during rinse
- Significant reduction in energy usage during rinse
- Reduction of rinse time leading to increase in throughput and decrease in resource usage

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 4

Subtask 1: Lowering HF Usage Method of Approach

Pre-treatments to enhance the etch rate of hafnium silicate in dilute HF:

- Pre-reduction treatment in gas mixtures,
 CO/CO₂, CO/N₂, and H₂/N₂
- Pre-treatment in aqueous inorganic amine solution

ESH Gain in Etching of Hafnium Silicate

Reductive pretreatment of hafnium silicate (HfSi_{0.74}O_{3.42}) in 5% inorganic amine solution improves the etch rate in 1:500 HF:H₂O

Subtask 2: Reducing the Water and Energy Usage Experimental Setup

7

Process Model for DHF Interaction with High-k

k_a: Adsorption Rate Coefficient

k_d: Desorption Rate Coefficient

k_e: Etching Rate Coefficient

$$\frac{dC_s}{dt} = \underbrace{k_a C_b (S_0 - C_s)}_{\text{adsorption rate of F}} \underbrace{k_d (C_s)}_{\text{adsorption rate of F}}$$

$$-\frac{1}{A} \frac{dM}{dt} = -(MW_{F^-}) \frac{dC_s}{dt} + (MW_{HO_2}) \times k_e C_b (S_0 - C_s)$$
rate of mass change etching rate of HfO₂

Analysis of the Experimental Data

Adsorption Rate Coefficient: 133 (lit/mol.s) Desorption Rate Coefficient : 0.001 (1/s) Etching Rate Coefficient : 1407 (lit/mol.s)

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 9

Effect of Surface Charge on Rinsing of HfO₂

HfO₂ surface in UPW is more positive than SiO₂ surface. Therefore, removal of negative ionic species from HfO₂ by rinse will be more difficult.

Analysis of Rinse Process in Single-Wafer Tools

Multi-component species transport equations

Process Model Schematic

$$\frac{\partial C_i}{\partial t} = \nabla \cdot (D_i \nabla C_i + z_i F \mu_i C_i \nabla \varphi) - u \nabla C_i$$
$$h = 0.782 (\frac{Q\mu}{\rho \omega^2 r^2})^{1/3} \qquad u_r = \frac{\rho \omega^2 r h^2 (1 - (1 - \frac{z}{h})^2)}{2\mu}$$

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing **12**

Summary

- Pre-treatment of hafnium silicate with an inorganic amine solution enhances its etch rate in dilute HF solutions; this would allow lower HF concentration and lower overall HF usage for etching, without compromising the etch rate.
- A comprehensive method for analyzing the rinse process in single-wafer spin tools is developed; application to high-k rinsing shows significant ESH gain by using the proposed staged rinse process.

Publications and Presentations

- X. Zhang, J. Yan, B. Vermeire, F. Shadman, and J. Chae, "Passive Wireless Monitoring of Wafer Cleanliness During Rinsing of Semiconductor Wafers," IEEE Sensors Journal, 10 (6), 1048, 2010.
- K. Dhane, J. Han, J. Yan, O. Mahdavi, D. Zamani, B. Vermeire, and F. Shadman, "Dynamics of Cleaning and Rinsing of Micro and Nano Structures in Single-Wafer Cleaning Tools," IEEE Transactions on Semiconductor Manufacturing, 24 (1), 125, 2011
- Jun Yan, "Water Usage Reduction and Water Reuse in Semiconductor manufacturing", the Second International Congress on Sustainability Science and Engineering, Water Re-Use Workshop, January 14, 2011, Tucson, Arizona, USA (Invited Presentation)
- D. Zamani, J. Yan, M. Keswani, O. Mahdavi, S. Raghavan, F. Shadman, "Environmentally Friendly Chemicals for Patterning of Hafnium Based Oxides and Silicates and Cleaning and Rinsing in Single-Wafer Cleaning Tools" Submitted to TECHCON 2011, Austin, Texas
- D. Zamani, J. Yan, M. Keswani, O. Mahdavi, S. Raghavan, F. Shadman, "Environmentally Friendly Chemicals for Patterning of Hafnium Based Oxides and Silicates and Cleaning and Rinsing in Single-Wafer Cleaning Tools" Submitted to SESHA 2011, Scottsdale, Arizona
- D. Zamani, J. Yan, M. Keswani, S. Raghavan, F. Shadman, "Adsorption Desorption of Diluted Hydrofluoric Acid on Hafnium Oxide Quartz Crystal in Flow Mode" In Preparation for Submission to Electrochemical and Solid-State Letters.

Industrial Interactions and <u>Technology Transfer</u>

- Interactions with ASM (Eric Shero and Eric Liu) for preparation of high-k wafers
- Interactions with Sematech (Joel Barnett) for high-k etching and cleaning development.

Subtask 3: Test Structure

GeO₂ : Growth Rate, D_{it}, Scalability

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Drive Current, Mobility Enhancement

Plasma Doping in Ge

- X_i < 10nm @ 5 x 10¹⁸ cm⁻³
- Shallower junctions possible
 - Scaling the voltage
 - Using arsenic species

Dopant Activation for USJ in Ge

- Laser Thermal Processing (LTP)
 - High dopant activation
 - Reduced diffusion
 - Implantation damage annihilation (Melt Regrowth)

Sheet Resistance & SIMS

Sheet Resistance and TEM

Dopant Activation using LTP

Dopant Activation > 1 x 10²⁰ cm⁻³

[1] D.Kuzum, et al., IEDM, 2009, 453, [2] C.O.Chui, et al. APL, 83, 3275, 2003,
[3] C. Wundisch, et al. 95, 252107, 2009, [4]H.-Y. Yu, et al. 685, IEDM 2009

High Performance N⁺/P Ge Diodes

Contact Resistivity (p_c) & Benchmark

Significant reduction in Metal / N⁺ Ge ρ_c of 7 x 10⁻⁷ Ω -cm²

MOSFET results

Unoptimized laser fluence causes discrepancy between I_{drain} and I_{source} due to high diode leakage

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Contributions

- First demonstration of
 - High dopant activation (> 1x10²⁰ cm⁻³) using Sb dopants (n-type) in Ge
 - Well behaved n⁺/p diodes ($I_{on}/I_{off} > 1x10^{5}$, $\eta < 1.2$) and MOSFETs.
 - Lowest contact resistivity for metal(Ti/AI)-n⁺ Ge contacts (7x10⁻⁷ Ω-cm²)
 - Ultra Shallow Junctions ($X_i < 10$ nm) for Ge
 - Scalable GeO₂ Interfacial Layers (IL) (sub -1nm) for Ge MOS with performance enhancement for Ge NMOSFET
 - Substrate orientation independent growth rate and D_{it} for GeO₂ engineered using SPA oxide

Publications and Presentations

- G. Thareja, J. Liang, S. Chopra, B. Adams, N. Patil, A. Nainani, E. Tasyurek, S.-L. Cheng, Y. Kim, S. Moffatt, R. Brennan, J. McVittie, T. Kamins, H-S.P. Wong, K. Saraswat and Y. Nishi, "High Performance Germanium N-MOSFET with Antimony Dopant Activation Beyond 1 x 10²⁰ cm⁻³", IEDM, December 6, 2010
- Masaharu Kobayashi, Gaurav Thareja, Masato Ishibashi, Yun Sun, Peter Griffin, Jim McVittie, Piero Pianetta, Krishna Saraswat, Yoshio Nishi, "Radical oxidation of germanium for interface gate dielectric GeO₂ formation in metal-insulatorsemiconductor gate stack," *Journal of Applied Physics*, 106, 104117, 2009.

Industrial Interactions and Technology Transfer

• Collaborative interactions with Initiative for Nanoscale Materials and Processes, INMP, at Stanford which is supported by 7 semiconductor and semiconductor equipment manufacturing companies.