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Task ID: 425.032 

Task Title: Fundamentals of Advanced Planarization: Pad Micro-Texture, Pad Conditioning, 

Slurry Flow, and Retaining Ring Geometry 

Deliverable: Report on the extended die-level model incorporating pad-micro-structure and 

slurry dependencies in chip-scale prediction of dishing and erosion across each die. 

 

I.  Summary/Abstract 

We are investigating the effect of CMP pad properties on the resulting chip-scale planarity 

and uniformity. In our previous work, a physical die-level CMP model was developed based on 

contact mechanics to understand and optimize the planarization process. To understand the 

interactions between pad asperities and the wafer, a physically-based particle-level model is 

introduced to predict the contact area. Then an extended die-level model is proposed that 

integrates these two models together. The extended die-level model includes four main 

parameters we are interested in: pad bulk modulus, asperity modulus, asperity size and 

characteristic asperity height. 

II. Technical Results and Data 

Physical Die-Level CMP Model 

Our physical die-level CMP model describes the dependence of pressures on local pattern-

density and surface step height of a single die. It assumes that the elastomeric polishing pad can 

be decomposed into bulk and asperity regions, as shown in Figure 1. The bulk material can be 

treated as an elastic body, deforming in response to long range wafer height differences. The 

surface asperities come in contact with the wafer surface, and the compression of the asperities 

depends on both the wafer surface profile and pad bulk bending.  

                         

Figure 2 illustrates the model framework. The wafer is assumed to sit face down, and the 

wafer surface is pressed down onto the polishing pad. For convenience, the surface normal of the 

wafer is taken as the positive Z direction, corresponding to the conventional “wafer face up” 

mathematical representation. Here, ),( yxw  is used to describe the z-coordinate of the nominal 

separation point between the bulk and asperities of the pad, and ),( yxz  is used to describe the 

 

Figure 1: Pad structure assumption in physical die-level CMP model. The whole pad is 

comprised of bulk and asperities. 
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wafer surface. The distance between the wafer surface and nominal bulk pad position is

),(),( yxzyxw  . 

                                    

Modeling of Pad Bulk 

The bulk is elastic and can be modeled using a contact wear model [1, 2]. The relationship 

between bulk surface displacement ),( yxw  and pressure ),( yxP  satisfies the following 

convolution: 
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 is the deformation response to a point pressure, 

where bE  is the effective modulus of the pad bulk. Here 0w  is the relative reference plane of the 

bulk surface when there is no pressure applied. For mathematical convenience, 0w  is set to zero. 

The boundary condition applied to Equation 1 is 
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where 0P  is the reference pressure applied to the bulk and S  is the chip area. Equation 2 

indicates that the bulk response force equals the force applied from outside. 

Modeling of Asperities 

The asperities are assumed to have a fixed width and an exponential height distribution [3]. 

Equation 3 defines the distribution with characteristic asperity height  , 
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where   is the asperity height. At location ),( yx , the distance between the wafer surface ),( yxz  

and the nominal plane ),( yxw  is ),(),( yxzyxw  , so asperities of height   larger than 

),(),( yxzyxw   will contact the wafer surface and the amount of compression of these 

asperities is  ),(),( yxzyxw  . All the asperities are assumed to obey Hooke’s law, i.e., the 

exerting force is proportional to the compressed amount. The expected value of ),( yxP  can be 

estimated by averaging across all of the asperities as follows: 

 

Figure 2: Framework of physical die-level CMP model. 
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where k  is a spring constant and )(z  is a derived asperity height distribution function, defined 

as  



z

dlzz  )()( . )(z  can be calculated once the probability distribution of 

asperity height is known, and it is a strictly decreasing function and approaches zero at infinity. 

Since we assume the asperity height distribution as given in Equation 3, )(z  is given by 
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When a feature of step height ),( yxhs  is pressed against the pad, as shown in Figure 2, 

Equation 4 implies that the up area pressure is 
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and the down area pressure is 
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The total local pressure is the sum of the two pressures weighted by pattern density ),( yx  

which is the area fraction of the up area. So we have 
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Combining Equations 5, 6, 7 and 8, we relate pressures to step height and characteristic asperity 

height as follows: 
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Modeling of CMP Process 

The physical CMP model can be obtained by combining the effects of the two parts above 

together: the elastic pad bulk, which is described by Equation 1, and the asperities with 

exponential height distribution, described by Equation 9. The pressure and deflection interactions 

between wafer surface topography and CMP pad are therefore described by 



4 

 

                                 



























0

),(),(),(

),(),(),(

)),(1(),(),(

wyxPyxFyxw

eeyxyxkyxP

yxzyxwyxh us

 
                (10) 

To run the model, pattern density ),( yx  needs to be extracted from the die layout. With 

initial values of step height and up area coordinates, the two unknowns ),( yxP  and ),( yxw  can 

be calculated by solving Equation 10 iteratively. Once ),( yxP  is solved, ),( yxPu  and ),( yxPd  

can be obtained by Equation 9; this pressure then translates into local material removal rate 

depending on the pressure-rate relationship used. In the example below, we employ the classic 

Preston equation [4] with local pressure ),( yxP  to calculate the instantaneous material removal 

rates of up area and down area as follows: 
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where 
pK  is the Preston coefficient and v  is the linear velocity of the pad relative to the wafer. 

In other applications (e.g., STI or copper CMP), non-Prestonian relationships that may include 

slurry chemistry effects can be used. Given the dynamic relationships above, ),( yxzu  and 

),( yxh  are updated in a time-stepping fashion during the simulation of CMP. Figure 3 shows a 

full chip simulation for the MIT/Sematech (SKW7-2) CMP test pattern [5]. 

           

Model for Asperity-Wafer Contact 

To model the mechanical response of the pad asperities to the wafer, the pad surface can be 

considered as a nominally flat surface covered with asperities of various shapes and different 

heights. It is typical to assume some asperity shape and use the height of the asperity as a 

characteristic parameter. The problem can then be broken down into two steps. 

First, we assume a certain asperity shape and solve the elastic deformation problem of a 

single asperity with height h when pressed upon the wafer surface. If the asperity deformation is 

δ, we can express the following terms as functions of δ, as illustrated in Figure 4: the contact area 

a(δ), the single asperity load as L(δ), and the pressure distribution in the contact area P(x, y; δ). 

 
(a)                                                                              (b) 

Figure 3: Full-chip simulation for the SKW7-2 test pattern at the time point when a 100 nm step height endpoint 

in the 50% pattern density region is reached. Simulation is for a JSR standard pad with standard conditioning 

disk: (a) Up area oxide thickness. (b) Step height. 
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Second, we assume an asperity height distribution or probability density function ξ(h), i.e., 

the number of asperities per unit area with height between h and h + dh is ξ(h)dh. If the distance 

between the wafer and the nominal surface of the pad is d, the asperities with height greater than 

d will be in contact with the wafer surface. The number of asperities in contact is 
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where N is the total number of asperities. 

 For the asperity with height h > d, the deformation is δ = h−d. The total contact area is 
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For an applied force of F0, the distance d can be obtained as 
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Greenwood [6] assumes that the asperities have spherical surfaces, all with the same radius R, 

and the contact is Hertzian. Based on the same assumptions as Greenwood and using the 

Hertzian results, we consider the pressure distribution and find: 
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where Ea is the reduced modulus of the asperity and 
 
 


a

L
Pc

2

3
  is the pressure at the center of 

the contact area. Here it is assumed that the wafer material is much more rigid than the pad 

asperity. 

 

Figure 4: Diagram of a single asperity being compressed. 
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Measurements have shown that the asperity height distribution approximately follows an 

exponential decay for large asperity heights [3], 
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where λ is the characteristic asperity height. Then the number of asperities in contact n, total 

contact area A, and the applied force F0 can be determined as 
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The total area occupied by N asperities is 2

0 4NRA   if we assume that all asperities stand close 

to each other without separation. We then get a reference pressure 
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Since the polishing only happens in the contact area [Error! Reference source not found.], an 

important pad surface property is the contact area percentage 
0

0 )(
A

A
Pf a   under the applied 

reference pressure Pa0. Using Eq. 17 and 18, we have 
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Thus, we can now relate the contact area percentage to key pad surface geometry and 

mechanical properties. If we find the characteristic asperity height, asperity radius and asperity 

modulus, we can predict the pad-wafer contact area percentage. Figure 5 shows that the contact 

area percentage decreases when the characteristic asperity height increases [7]. This is because a 

smaller number of high asperities contact the wafer, and bear the load with aggregate smaller 

contact area. 

                                      

 

Figure 5: Contact area percentage vs. characteristic asperity height 

at reference pressure 4 psi. 
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Extended Die-Level CMP Model 

With the particle-level model for asperity-wafer contact, we can now extend the die-level 

model to include asperity properties which are assumed to be different from pad bulk properties. 

Here Equation 18 can be utilized to calculate the local pressures needed in the die-level model. 

The up area pressure is thus 
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and the down area pressure is 
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Then Equation 20 and 21 can replace Equation 6 and 7 in the die-level model derivation, giving 
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This die-level model is thus extended to include asperity size R and asperity modulus Ea. The 

two unknowns ),( yxP  and ),( yxw  can be calculated by solving Equation 22 iteratively. Once 

up area pressure and down area pressure are solved, Equation 11 is utilized to calculate the 

instantaneous material removal rates of up area and down area and update the chip surface 

evolution during CMP process. 

Future Work 

The extended die-level CMP model includes additional pad properties than our previous 

model, including parameters that can be directly measured. Using information about the pad 

surface structure, the new model enables us to estimate the bulk surface displacement ),( yxw  in 

a more refined way than in the previous physical model. However, a perhaps surprising result is 

that the pressure distribution across the chip does not change when the asperity structure is taken 

into account as above. There are two approaches to improve the model to include the effect of 

asperity properties on pressure distribution. The first is introducing an asperity size distribution 

and taking into account layout pattern size. The down area pressure may only be affected by a 

certain asperity size range; very wide asperities cannot touch some down areas. A second model 

modification under consideration is to relate the distance between the wafer and the bulk surface 

to slurry flow rates, which might affect blanket removal rates. 

Adding some system effects can also improve the die-level model. In existing wafer-level 

models, both pressure and relative velocity are non-uniform spatially across the pad and wafer. 

Slurry flow rate and abrasive particle average resident time are strongly affected by pad groove 

design and conditioning. A future opportunity is to couple and transfer information about wafer-

level non-uniformity into the die-level model to estimate both time-averaged effects on any 

given die of interest, and to calculate nonuniformity in planarization for different die across the 

wafer. 
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