"In-Situ" Monitoring of Metal Contamination in Dilute HF below 100 ppt

A. J. Reddy, J. Michel, and L. C. Kimerling
Department of Materials Science and Engineering
Massachusetts Institute of Technology
ENVIRONMENTALLY BENIGN
FRONT-END-OF-LINE SURFACE PREP

Cost of Ownership = \frac{(Fixed \ Cost + Operating \ Cost)}{Yield \times Throughput \times Utilization}

- **In-Situ** Bath Contamination Monitoring
 - Maintains yields
 - Increases tool utilization
 - Reduces consumables

- 25% of process steps

Average annual fab consumption
- 5 GWh electricity
- 240 million gallons water
- 300 tons hazardous chemicals

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
TRACE METALS AND GOI

- Less pure solutions lead to low-field (Mode I) breakdown
- Thinner oxides more sensitive to contamination

Weibull Distribution

$$F = 1 - \exp(-CE^b)$$
IN-SITU PERFORMANCE MONITORING

- Purifier binds metals with macrocycle ligands
- Remaining reducible metals deposit on silicon wafer
- Metals detected as change in minority carrier lifetime
HIGH SENSITIVITY MEASUREMENT OF SURFACE STATES

- Recombination occurs at surface and bulk sites

\[
\frac{1}{\tau_{\text{meas}}} = \frac{1}{\tau_{\text{bulk}}} + \frac{1}{\tau_{\text{surf}}}
\]

\[
\tau_{\text{meas}} \approx \frac{d^2}{D \pi^2}
\]

\[
\tau_{\text{meas}} \approx \frac{d}{2S}
\]

\[
\tau_{\text{bulk}} = 10\text{ms}
\]

Limited by:
- Diffusion
- Surface Recombination
- Bulk Recombination
METAL DEPOSITION FROM FLOWING SOLUTIONS

- Surface reaction
 \[
 \frac{d[Cu]_{surf}}{dt} = -k \times [Cu]^*
 \]

- Diffusion across boundary layer
 \[
 J_{Cu} = \frac{D_{Cu} \times ([Cu]_{bath} - [Cu]^*)}{\delta}
 \]

- Static boundary layer present in laminar flow
METAL DEPOSITION FROM FLOWING SOLUTIONS

- Transient behavior
 - deposition of near-surface metals
 - surface roughening

- Steady-state deposition

\[
\frac{d[Cu]_{surf}}{dt} = [Cu]_{bath} \left(\frac{1}{k + \delta/D} \right)
\]
IN-SITU DETECTION OF CU DEPOSITION FROM DILUTE HF

- Change in lifetime indicates metal deposition

Cu Coverage (10^{11}/cm^2)

Time (s)

0 4000 8000 12000

1 ppb Cu

2 ppb Cu

3 ppb Cu

$\propto t$
IMPACT OF HF DILUTION ON DEPOSITION RATE

• Dilution enhances deposition rate by 15x
PROPOSED MODEL

• Two competing cathodic reactions:

\[2H^+ + 2e^- \rightarrow H_2 \]

\[Cu^{++} + 2e^- \rightarrow Cu \]

• Dilution of HF limits \(H_2 \) formation
CONCLUSION

• Gate Oxide Integrity degraded by sub-ppb metal contamination

• In-situ contamination monitor capable of quantitative analysis below 20 ppt Cu

• Dilution of HF from .5 wt% to .1 wt% increases measured deposition rate by 15x