

ENVIRONMENTAL VALUE (EnV) ANALYSIS

S. Thurwachter¹, J. Schoening², P. Sheng¹

¹Department of Mechanical Engineering, University of California at Berkeley ²Environmental Technologies and Services, Applied Materials Inc.

OVERVIEW

Problem Statement

■ EnV Framework

- Case Study Demonstration
- Future Directions

PROBLEM STATEMENT

Evaluate Semiconductor Manufacturing

- Influence Equipment/Process/Facility Design
- Requirement Tool that captures impacts of manufacturing and links to design parameters

ENVIRONMENTAL VALUE (EnV) ANALYSIS

OF CONTROL OF CONTROL

Process Architecture

Process Models

- Characterization
 - Cost of ownership
 - Health and environmental impacts
 - Process performance

PROCESS ARCHITECTURE

EnV CHARACTERIZATION Cost

- Facility data
- System data
- Equipment data
- Production data

- Capital Costs
- Operation Costs
- Treatment Costs

EnV CHARACTERIZATION Impacts

- Human Health Impacts
 - Multi-criteria hazard (MCH) evaluation
 - Incorporates 6 toxicity/physical safety categories
- Environmental Impacts
 - LCA classification approach
 - Several regional and global indicators
- Under Development

EnV CHARACTERIZATION Performance

- Metrics are process/equipment dependent
- Examples for semiconductor manufacturing:
 - Wafer to wafer uniformity
 - Stress drift
 - Gas utilization
 - Abatement efficiency
 - Regulatory compliance

APPLICATION: CASE STUDY

Tool Mainframe Evaluation

- 4 chamber Centura and 2 twin Producer
- 0.75 m PECVD TEOS process
- RF C₂F₆ clean vs. Remote Clean[™] NF₃

EnV Analysis

- Established process architecture models
- Collected data
- Characterized systems

EnV RESULTS Cost

■ Δ =\$0.10/wp

■≈\$175,000 per 6000

wspw fab

EnV RESULTS Cost

TO PART TO PAR

- Operation
 and
 treatment
 costs %'s
 Power and
 - Power and abatement reductions

EnV RESULTS Impacts

- Order of magnitude drop in GWP
- 4.5 lb. **1** in HAPs
 - **→** 0.025%

of site limit

EnV RESULTS Performance

Variety of performance indicators used

Estimated Tool Downtime		
Throughput (wafers/hour)		
Wafer Uniformity		
Wafer to Wafer Uniformity		
Film Stress		
Refractive Index		
Particles/Wafer		
Wafers/Dry Clean		
Wafers/Wet Clean		
Estimated Abatement Downtime		
Gas Utilization/Dissociation %		

RESULTS Performance

■ NF₃ clean performance was superior or statistically insignificant to the C₂F₆ clean

	C_2F_6	NF ₃
Gas Utilization	50%	92-99%
Abatement Efficiency	30%	50%
Equipment Downtime		↓
Wafer Throughput		1
Wafer Properties	s tatis tically insignificant	

DISCUSSION

Conclusions

- Quantification of trade-offs
- Decisions are value-based
- Boundaries critical → wider boundaries important

■ Future Work

- Expand impact characterization
- Sensitivity analysis
- Develop facility level model from the processes

