An Advanced Cleaning Technique that is Environmentally Benign

K. Reinhardt and K. Shriniyasan

Contents

- Introduction and Background
 - Drive toward advanced cleans
 - Emerging all dry clean processing
 - Next generation clean challenges
- High Pressure Equipment
 - Configuration
 - Safety
 - Re-circulator and purifier
- Results and Discussion
 - Process
 - Example of results
- Conclusions

Drive Toward New Generation Cleans

- Cost Reduction
 - Reduction or elimination of solvents
 - Reduction in excessive use of water
 - Integrated clean processing
- Technology
 - Compatibility with new IC materials
 - Limitations of water-related wetting
 - surface tension
 - **corrosion promotion**
- Environmental
 - Use environmentally benign chemicals
 - Recycle chemical reagents

Next Generation Clean Requirements

Clean Challenges

- Water surface tension and viscosity
 - High surface tension and high viscosity of water
 - Prevents drying of high aspect ratio vias
 - Prevents wetting if extremely small vias

Clean Challenges

- Compatibility with new IC materials
 - High organic percent low-κ materials will be a challenge to clean
 - Augmentation of the dielectric constant
 - Undercutting of the hard mask

Emerging Dry Clean Technologies

- Particle Removal
 - Laser cleaning
 - Cryogenic snowballs- CO₂ or Ar/N₂
 - Charged liquid clusters
- Post-Etch Residue Removal
 - Supercritical Fluids- CO₂ based
 - Low Pressure Gas- SO₃ based
 - High Pressure Fluid- NH₃ based
 - Densified Fluid Cleaning (DFC)

Emerging High Pressure Clean Technologies

Advantages of High Pressure Technology

- Able to penetrate high aspect ratios
- **♦** Able to remove residue from small vias
 - **■** Low surface tension

INTERNATIONAL

High Pressure Cleaning

Densified Fluid Cleaning - DFC

- Densified Fluid Cleaning
 - A non-aqueous cleaning technology
 - Using anhydrous liquid ammonia
 - At elevated pressure and low temperature
- DFC is applied to post-etch residue removal
 - Applications
 - via/trench
 - metal cleans
 - deep trenches
 - ■low- κ materials

DFC Process Module

Reactor Safety - Design Considerations

INTERNATIONAL

Fugitive Emissions Control

Purification Process Flow

Impurity sampling points

Prototype Purifier at GaSonics

GaSonics INTERNATIONAL

Purifier Results for Metal Contamination

INTERNATIONAL

Purifier Results for Metal Contamination

Purifier Results for Metal Contamination

Metal Contamination Removal Efficiency

INTERNATIONAL

Ammonia Recovery vs. Product Purity

Purifier Results for Gaseous Contamination

DFC Process Sequence

Via to Low-κ/Copper: Post-Etch

Presented at ECS Fall 1999 Clean Symposium

Structure:

Acknowledgements go to Sematech for providing samples Sidewall Polymer and Metal Residue

Via to Low-k/Copper: Post-DFC

Presented at ECS Fall 1999 Clean Symposium

After DFC process only: Residue-free

GaSonics

Effects on Thin Films: Low-κ FTIR

Presented at ECS Fall 1999 Clean Symposium

Via to TEOS/Al: Post-Plasma and DFC

After Microwave Plasma + DFC: Residue-free

Structure:

Effect on Thin Films Exposed to DFC

Film	Thickness	Index of
	Change	Refraction
After 5 minute exposure to DFC		
SiO_2	0.01 %	0.02 %
TEOS	0.05 %	0.03 %
SOG	< 0.7 %	0.1 to 0.2 %
${f Flare^{TM}}$	< 0.01 %	< 0.01 %
HOSPTM	0.03%	< 0.01 %
Poly-Si	None	None

Process Development: Characterization

Design of Experiment 1

- Varied
 - Meg Power
 - Pressure
 - Cycles
 - Rotation
- RecipeOptimized

Response:

PR removed (Å)

Clean Mechanisms

- Removal of Residue and Particles
 - Physical
 - Breaking apart matrix- liquid gas phase changes
 - Washing away particles- fluid shearing flow
 - Megasonic action- cavitation or pressure pulses
 - **■** Thermophoresis- temperature gradient
 - Chemical
 - Swelling residue and photoresist
 - Dissolving residue
 - Solvating metals

Clean Mechanism

- Residue removal physically
 - Gas rapidly evolving from liquid
 - Breaks apart residue matrix to particles

Clean Mechanism

- Residue removal mechanism similar to thermophoresis observed with snow and aerosols
 - heat transfer by shearing gas flow as NH_{3 (l)} evaporates
 - dislodges particles and is removed in downstream flow

GaSonics INTERNATIONAL

Clean Mechanism

- Residue removal by megasonics
 - Cavitation or pressure pulses from acoustical streaming
 - Dislodges particles by high pressure imploding bubbles or pressure gradient

Conclusions

- DFC is a non-aqueous, non-damaging, low temperature wafer cleaning technology
- A two step all dry process is used to remove post-etch residues
 - Microwave plasma + DFC
- DFC does not affect materials used in integrated circuit device manufacturing
 - Oxides
 - Low-K

Acknowledgments

- GaSonics
 - Duong Nguyen
 - Bob Shepherd
- **BOC**
 - Piotr Sadkowski

