An Advanced Cleaning Technique that is Environmentally Benign

K. Reinhardt and K. Shrinivasan
Contents

• Introduction and Background
 • Drive toward advanced cleans
 • Emerging all dry clean processing
 • Next generation clean challenges

• High Pressure Equipment
 • Configuration
 • Safety
 • Re-circulator and purifier

• Results and Discussion
 • Process
 • Example of results

• Conclusions
Drive Toward New Generation Cleans

- **Cost Reduction**
 - Reduction or elimination of solvents
 - Reduction in excessive use of water
 - Integrated clean processing

- **Technology**
 - Compatibility with new IC materials
 - Limitations of water-related wetting
 - surface tension
 - corrosion promotion

- **Environmental**
 - Use environmentally benign chemicals
 - Recycle chemical reagents
Next Generation Clean Requirements

- Smaller, higher aspect ratios
- Unique etch chemistries
- New materials: dielectrics
- Polymer with imbedded metals
- High percent of overetch
- New materials: metals
Clean Challenges

- Water surface tension and viscosity
 - High surface tension and high viscosity of water
 - Prevents drying of high aspect ratio vias
 - Prevents wetting if extremely small vias
Clean Challenges

- Compatibility with new IC materials
 - High organic percent low-κ materials will be a challenge to clean
 - Augmentation of the dielectric constant
 - Undercutting of the hard mask

![Diagram showing compatibility with new IC materials with low-κ materials and photoresist oxide hard mask.](image)
Emerging Dry Clean Technologies

- **Particle Removal**
 - Laser cleaning
 - Cryogenic snowballs- CO$_2$ or Ar/N$_2$
 - Charged liquid clusters

- **Post-Etch Residue Removal**
 - Supercritical Fluids- CO$_2$ based
 - Low Pressure Gas- SO$_3$ based
 - High Pressure Fluid- NH$_3$ based
 - Densified Fluid Cleaning (DFC)
Emerging High Pressure Clean Technologies

Challenges:
• High aspect ratio
• Small CD
• New materials

Technologies under development
- H$_2$O/CO$_2$
- HiP alcohols
- SCH$_2$O

Technologies at funded companies
- SCCO$_2$
- NH$_3$
- Vapor SO$_3$

Low Pressure
Advantages of High Pressure Technology

- Able to penetrate high aspect ratios
- Able to remove residue from small vias
 - Low surface tension
 - Low viscosity
High Pressure Cleaning

- Platform and Chamber
- Chemical Re-circulation and Purification
- High Pressure Toxic Gases
 Production Worthy
 Cost Effective
 Environmental
- Process and Applications
- Safety Requirements
- GaSonics International
Densified Fluid Cleaning - DFC

- Densified Fluid Cleaning
 - A non-aqueous cleaning technology
 - Using anhydrous liquid ammonia
 - At elevated pressure and low temperature
- DFC is applied to post-etch residue removal
 - Applications
 - via/trench
 - metal cleans
 - deep trenches
 - low-κ materials
Reactor Safety - Design Considerations

- Reactor Material Yield: 4000 psig
- Reactor Design Pressure: 1000 psig
- Reactor Proof Pressure: 750 psig
- Burst Disk Rating: 750 psig
- Hardwired Interlock: 650 psig
- Saturation @ Max Temp: 480 psig
- Operating Pressure: 350 psig
Fugitive Emissions Control

- Reactor Scavenger Emissions Detector
- Gas Box Scavenger Emissions Detector
- Exhaust
- Reactor Door Emissions Detector
- PS - Pressure Switch
- AT - Analytical Transmitter
- Gas Box Leak Exhaust
Purification Process Flow

Pure NH₃ 750 psig, 90º C

Impure NH₃ 5 psig 25º C

- DFC Tool
- Filter 1
- Filter 2
- Moisture Removal
- Gaseous and Metal Impurity Removal
- Heat Pump
- Compressor
- Surge Tank
- Particles

Impurity sampling points
Prototype Purifier at GaSonics
Purifier Results for Metal Contamination

- post-dfc
- post-filter1
- feed tank
- post-filter2
- membrane

ppb

Na
Mn
Fe
Purifier Results for Metal Contamination

ppb

post-dfc post-filter1 feed tank post-filter2 membrane

P K Ca

GaSonics INTERNATIONAL
Purifier Results for Metal Contamination

ppb

post-dfc post-filter1 feed tank post-filter2 membrane

Li Cr Mo

GaSonics INTERNATIONAL
Metal Contamination Removal Efficiency

Removal Efficiency %

- Sb: 87.2%
- Zn: 87.2%
- Fe: 87.2%
- Cr: 87.2%
- Ca: 87.2%
- Na: 87.2%
- Li: 87.2%
- Ti: 87.2%
- Mo: 87.2%
- K: 81.3%
- Mn: 72.3%
- P: 72.3%
Ammonia Recovery vs. Product Purity

100 ppm feed impurities

Impurity Concentration in Recovered Product (ppm)

Ammonia Recovery (%)
Purifier Results for Gaseous Contamination

Ammonia Recovered at 97%

- N2: post-filter 100%, feed tank 99%
- O2: post-filter 85%, feed tank 100%
- H2: post-filter 100%, feed tank 100%
- CO2: post-filter 100%, feed tank 100%
- CH4: post-filter 100%, feed tank 100%
- CO: post-filter 100%, feed tank 100%
DFC Process Sequence

- **Hot ammonia introduced into reactor**
 - Controlled pressurization (10-15 psig/sec)
 - Hot vapor condenses on surface
 - Wafer platen held at 20°C

- **Pre-process nitrogen purge**
 - Eliminate oxygen
 - Eliminate water vapor

- **Reactor de-pressurized**
 - Controlled de-pressurization (15-20 psig/sec)
 - Ammonia evaporates completely
 - Residual ammonia is purged with UHP N₂
 - Ammonia is recycled and purified

- **Wafer at steady state**
 - Multi-step processing
 - Maximum 300 psig (20.4 atm) 80°C, NH₃ flow continuous
 - Platen rotation & megasonics enhance cleaning action
Via to Low-κ/Copper: Post-Etch

Presented at ECS Fall 1999 Clean Symposium

Structure:

- Oxide Cap
- Low-κ Flare
- Si3N4
- Cu

Acknowledgements go to Sematech for providing samples

Sidewall Polymer and Metal Residue

GaSonics INTERNATIONAL
Via to Low-κ/Copper: Post-DFC

Presented at ECS Fall 1999 Clean Symposium

After DFC process only: Residue-free
Effects on Thin Films: Low-κ FTIR

Allied Signal HOSP™

Presented at ECS Fall 1999 Clean Symposium

GaSonics INTERNATIONAL
Via to TEOS/Al: Post-Plasma and DFC

After Microwave Plasma + DFC: Residue-free

Structure:

- TiN
- TEOS Oxide
- Al
Effect on Thin Films Exposed to DFC

<table>
<thead>
<tr>
<th>Film</th>
<th>Thickness Change</th>
<th>Index of Refraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After 5 minute exposure to DFC</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.01 %</td>
<td>0.02 %</td>
</tr>
<tr>
<td>TEOS</td>
<td>0.05 %</td>
<td>0.03 %</td>
</tr>
<tr>
<td>SOG</td>
<td>< 0.7 %</td>
<td>0.1 to 0.2 %</td>
</tr>
<tr>
<td>Flare™</td>
<td>< 0.01 %</td>
<td>< 0.01 %</td>
</tr>
<tr>
<td>HOSP™</td>
<td>0.03%</td>
<td>< 0.01 %</td>
</tr>
<tr>
<td>Poly-Si</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Process Development Characterization

Design of Experiment 1

- Varied
 - Meg Power
 - Pressure
 - Cycles
 - Rotation

- Recipe Optimized

Response:
PR removed (Å)
Clean Mechanisms

- Removal of Residue and Particles
 - Physical
 - Breaking apart matrix- liquid gas phase changes
 - Washing away particles- fluid shearing flow
 - Megasonic action- cavitation or pressure pulses
 - Thermophoresis- temperature gradient
 - Chemical
 - Swelling residue and photoresist
 - Dissolving residue
 - Solvating metals
Clean Mechanism

- Residue removal physically
 - Gas rapidly evolving from liquid
 - Breaks apart residue matrix to particles
Clean Mechanism

- Residue removal mechanism similar to thermophoresis observed with snow and aerosols
 - heat transfer by shearing gas flow as NH_3 evaporates
 - dislodges particles and is removed in downstream flow
Clean Mechanism

- Residue removal by megasonics
 - Cavitation or pressure pulses from acoustical streaming
 - Dislodges particles by high pressure imploding bubbles or pressure gradient
Conclusions

- DFC is a non-aqueous, non-damaging, low temperature wafer cleaning technology
- A two step all dry process is used to remove post-etch residues
 - Microwave plasma + DFC
- DFC does not affect materials used in integrated circuit device manufacturing
 - Oxides
 - Low-κ
Acknowledgments

◆ GaSonics
 ● Duong Nguyen
 ● Bob Shepherd

◆ BOC
 ● Piotr Sadkowski