CMP Waste Treatment: Electrophoretic Cross-Flow Filtration

(Subtask A4-1)

Jamie L. Ludke Chemical and Environmental Engineering
Paul A. Safier Chemical and Environmental Engineering
Milan Bier Chemical and Environmental Engineering
James C. Baygents Chemical and Environmental Engineering
Srini Raghavan Materials Science and Engineering

The University of Arizona

[NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing]
Outline

• Significance of CMP waste problem
• Principles of electrophoreotic cross-flow filtration
• Illustration of apparatus
• Electrophoreotic filtration of silica suspensions
• Electrophoreotic filtration of dissolved copper
• Power consumption of electrophoreotic filtration
• Summary of results and future work
Significance of CMP Waste Problem
Single fabrication plant produces 200 GPM of CMP effluent†

† Maag, Benoit, “Copper CMP Effluent Flow in a Semiconductor Facility”, ERC TeleSeminar, April 6, 2000

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Waste Characteristics versus Environmental Regulations

- Effluent contains approximately 500-5000 ppm TSS and 5-50 ppm Cu‡
- Environmental regulations require that effluent be reduced to <5 ppm TSS and 0.1-2 ppm Cu before it may be discharged to waste treatment system‡

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Principles of Electrophoretic Cross-Flow Filtration
Cross-Flow Filtration

- Cross-Flow Filtration reduces membrane fouling (filter cake build-up) by continuously sweeping the membrane surface.
- Such action extends the life of the membrane and helps sustain flow of permeate through the membrane.
Cross-Flow Filtration with Electric Field

- An electric field enhances cross-flow filtration process by electrophoretically driving particles away from filter surface.
- Thus, filter cake is suppressed and filter effectiveness maintained.

V_f - direction of flow of permeate water
V_p - direction of electrophoretic migration of particles
Filter Cake Prevention

- The upward slope of several of these curves illustrates the decrease in filtration rates resulting from filter cake build-up.

- The slope of the lines decreases with applied voltage.

- This is evidence of decreased rate of filter cake deposition due to electrophoretic transport of particles away from the filter surface.

Plot T/V versus V for clay suspension of 450 mg. Clay (200 mesh) and 450 mg. NaCl per liter

Reasons for Investigating the Technology

• An electric field suppresses filter cake build-up and enhances cross-flow filtration.

• An electric field biases the transport of copper and other solutes.
Electric Field Biases Transport of Cu

- V_f - direction of flow of permeate water
- V_p - direction of electrophoretic migration of particles

Diagram
- Filter Membrane
- E - electric field
- V_f - permeate flow
- V_p - electrophoretic migration
- Cu$^{2+}$
- Retentate
- Permeate
Illustration of Apparatus
Single Cell

CMP aqueous waste suspension

Constituents:
- Solids (0.05-0.5 w/v %)
 e.g. Silica (80 nm)
- Copper
 Copper ions (5-50 ppm)
 Copper complexes
- Copper chelating agents
 e.g. Citric Acid
- Corrosion inhibitors
 e.g. BTA
- Conductivity
 300-1500 µS/cm

Permeate

V_f - direction of flow of permeate water
V_p - direction of electrophoretic migration of particles
Expanded Cell Assembly

A End plate with Electrode
B Dialyzing Membrane
C Input Spacer for 1st Cell
D Micro Filter (0.8 µm)
E Output Spacer for 1st Cell
F Dialyzing Membrane
G Input Spacer for 2nd Cell
H Micro Filter (0.8 µm)
I Output Spacer for 2nd Cell
J Dialyzing Membrane
K Input Spacer for 3rd Cell
View of Endplate with Electrode

Outside View of Endplate
- Permeate Outlet
- Pressure Tap
- Retentate Outlet

Side View of Endplate
- 2.2 cm
- 2.9 cm

Inside View of Endplate
- Pt Electrode
- Permeate Outlet
- Retentate Outlet
- 0.64 cm
- 6 cm
- 10.5 cm
- 19.5 cm
- 33.5 cm
- 16.5 cm
- 24.5 cm
Front View

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
Entire Device
Components of Device

• Electrodes - platinum

• Membranes - dialyzing cellophane

• Filter membranes - \(\sim 0.8 \, \mu m \) porosity
Electrophoretic Filtration of Silica Suspensions

- Oxide CMP Waste
- Model Silica Suspensions
- Model Silica Suspensions doped with Copper
Electrophoretic Filtration of Oxide CMP Waste

(Oxide CMP waste provided by: Microelectronics Lab, U of A)

Initial Waste Characteristics:
- Turbidity: 2300 NTU
- Concentration: ~4500 ppm
- pH: 7.6
- Conductivity: 110 µS/cm
- Particle size: ~80 nm

95% removal

Electric Field (volts/cm)
Electrophoretic Filtration of Silica Suspension
(Klebosol Colloidal Silica)

Initial Waste Characteristics:
- Concentration of SiO₂: 1000 ppm
- pH: 6.0
- Conductivity: 600 μS/cm
- Particle Size: 80 nm

20% removal
91% removal
Electrophoretic Filtration of Silica Suspension Doped with Copper

Initial Waste Characteristics:
- Concentration of Cu\(^{2+}\): 17 ppm
- Concentration of SiO\(_2\): 1000 ppm
- pH: 5.5
- Conductivity: 700 \(\mu\)S/cm

- >72% Cu removal
- >93% SiO\(_2\) removal
Electrophoretic Filtration (Electrodialysis) of Dissolved Copper
Electric Field Biases Transport of Cu

- V_f - direction of flow of water
- V_{p} - direction of electrophoretic migration of particles

Retentate

Permeate

Cu^{2+}
Electrophoretic Filtration (Electrodialysis) of Copper

Initial Waste Characteristics:
- Concentration of Cu$^{2+}$: 17 ppm
- pH: 5.5
- Conductivity: 650 μS/Cm

>73% removal
Power Consumption of Electrophoretic Filtration
Power Consumption of Electrophoretic Filtration of Silica

Initial Waste Characteristics:
- Concentration of SiO$_2$: 1000 ppm
- pH: 5.4
- Conductivity: 700 μS/cm
- Particle Size: 80 nm

[NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing]
Power Consumption:
Mechanical Filtration versus Electrophoretic Filtration

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Power Equation</th>
<th>Power Consumption</th>
<th>Power Consumption/Permeate Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Filtration (Ultrafiltration)</td>
<td>Q x DP</td>
<td>17 Watts</td>
<td>8 MJ/m³</td>
</tr>
<tr>
<td>(with 45% pump efficiency)</td>
<td></td>
<td>(with 45% pump efficiency)</td>
<td></td>
</tr>
<tr>
<td>Electrophoretic Filtration of Simulated Copper CMP Waste (conductivity = 700 µS/cm)</td>
<td>V x I</td>
<td>50 Watts</td>
<td>32 MJ/m³</td>
</tr>
<tr>
<td>(Electric Field of 20 volts/cm)</td>
<td></td>
<td>(Electric Field of 20 volts/cm)</td>
<td></td>
</tr>
<tr>
<td>Electrophoretic Filtration of Oxide CMP Waste (conductivity = 100 µS/cm)</td>
<td>V x I</td>
<td>2.5 Watts</td>
<td>4 MJ/m³</td>
</tr>
<tr>
<td>(Electric Field of 10 volts/cm)</td>
<td></td>
<td>(Electric Field of 10 volts/cm)</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Results

In the suspension studied thus far:

• Electrophoretic filtration readily removes more than 90% of silica particles from CMP suspension

• Electrophoretic filtration removes approximately 75% of copper from the permeate stream
Potential Applications

1. Use immediately before standard ultra-filtration and ion-exchange processes to pre-filter CMP waste.

2. Use immediately after mechanical filtration process to further filter concentrated effluent.
Electrophoretic Filtration of Concentrated CMP Suspension

![Graph showing electrofiltration of concentrated oxide CMP](image)

- Turbidity of Initial Concentrated CMP Suspension (NTU)
- Turbidity of Permeate/Initial CMP Suspension
3. Small footprint enables each CMP tool to have its own individual filtration process.
Future Work

• Add chelating agent to the model copper suspension
• Concentrated silica suspensions (e.g. CMP sludge)
• Experiment with actual copper CMP waste (need samples !!!)
• Experiment with other types of filters