

Fundamental Beam Studies of Radical Enhanced Atomic Layer CVD (REALCVD)

Frank Greer, David Fraser, John Coburn, David Graves UC Berkeley April 19, 2001

What is A.L.D.?

- Atomic Layer Deposition
 - A.K.A. Sequential Deposition, MOALD, ALE, ...
 - Usually a two step process
 - Chemisorption of a metallic precursor
 - Reactive ligand stripping by reactive stable molecule
 - Distinguishing feature \rightarrow Each step is self-limiting
 - Film thickness controlled by number of cycles

Radical Enhanced Atomic Layer CVD (REAL CVD)¹

- Uses a volatile precursor and a radical source to deposit a film
- Reactants introduced in separate steps to achieve atomic layer control
- Products are nitride film and HCl
- Radical flux instead of heated substrate catalyzes precursor decomposition
 - Potentially lower processing

temperatures

Step 1: $TiCl_{4 (g)}$ Step 2: $TiCl_{x (ab)} + XH^{*}_{(g)} + N^{*}_{(g)} \rightarrow TiN_{(s)} + XHCl_{(g)}$

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing ¹A. Sherman U.S. Patent 1999.

REALCVD Questions

- Low temperature processing questions:
 - Precursor
 - How and when is monolayer-like adsorption achieved without precursor condensation?
 - Radicals
 - Are radicals sufficiently reactive to remove ligands from precursors?
 - Are radicals sufficiently unreactive to stop after one ML of reaction?
- Must determine the following:
 - TiCl₄ sticking probability
 - D abstraction probability for Cl removal
 - N insertion probability
 - Relative REALCVD ESH impact compared to other processes
 - Relative REALCVD ESH impact for different precursors/processes

Experimental Procedure

- Conventional ALD-like sequence
 - Each step in process monitored *in-situ* with QCM
- Surface temp varied (32-135 °C)

Precursor Adsorption QCM Results

Adsorption

- Two distinct uptake regimes
 - Initial rapid ads. followed by significantly slower ads.

TiCl

- Adsorption may not be confined to a single monolayer
- Data fairly well represented by assuming precursor adsorbs two monolayers of TiCl₂ *
- Model fit allows estimation of:
 - Sticking probabilities
 - Active site (*) densities

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

* Suntola, T. et al. 1996

Adsorption Model Results

				-	1.2E+15 -	
Temperature	s(TiN)	s(TiCl _x)	Site			
(°C)	initial	self	Density	:m²	1E+15 -	 Raw Adsorption Data
	sticking	sticking	$(\#/cm^2)$	ules/c	8E+14 -	Model Fit to Data
32	8x10-3	1x10 ⁻⁴	$5x10^{14}$	loleci	6E+14 -	
				CI2 m	4E+14 -	
80	8x10 ⁻³	9x10 ⁻⁵	$5x10^{14}$	Τi	2E+14	TiN TiCl _x
			1.4		0	
135	8x10-3	6x10 ⁻⁵	$5x10^{14}$		(2000 4000 6000 8000 100
						Exposure (L)

- initial sticking ~ 100x self sticking •
 - contributes to uniformity
- self sticking decreases with inc. T •
 - coverage is more monolayer-like at higher temperatures

Dechlorination Results

- Exponential decay in Cl surface conc. fit assuming replacement of Cl with D
 - $k_{D+Cl \rightarrow DCl} = 3x10^{-4}$
 - Fairly insensitive to T
- Calculated removed Cl density within a few% of ads. assumptions
 - Suggests TiCl₂ is appropriate surface species

Dechlorination Results

- Residual Cl% can be controlled through TiCl₄ and D dosages
- Increasing relative D exposure time reduces Cl content to detection limit of XPS! (<0.3%)
- Comparable thermal ALD process yields 1.5-3% Cl at 400°C and 350°C, respectively¹
- •Previously reported REALCVD of Ti shows Cl% "in the low percentage range"²
- ¹ Satta, A. *et al.* MRS 2000 Spring Meeting (Session D6.5)
 ² Rossnagel, S.M. *et al. JVST B* 18(4) 2000.

- Nitrogen uptake does not seem to saturate
 - *ex-situ* XPS shows N/Ti > 1
- Initial uptake of nitrogen fit to linear model
 - $s_N = 8x10^{-3}$
 - fairly insensitive to T
 - uptake slows over time suggesting diffusional limitations into the film
- Certain conditions can produce N deficient films as well (N/Ti ~ 0.5)

ESH Aspects of ALCVD

- Atomic Layer CVD shows great promise for applications ranging from high k gate dielectric material deposition to barrier film deposition, among others.
- Necessary to develop deeper understanding and control of technology to optimize for both technology and ESH.
- Precursors include organometallics and halogenated compounds.
- Variations on the presursors and processing technology are possible (eg. REALCVD), but few data currently available to allow optimization.

- Most ALCVD processing gases/precursors as well as decomposition products have not been tested for toxicity: some materials may be expensive or impossible to use in the future.
- Suggests need for larger database and more processing options.
- Start to develop predictive capability for compound reaction/decomposition/deposition so future choices can be made more systematically without testing all possible combinations
- Develop methodology for quantitative comparisons between alternative deposition technologies (thermal CVD, plasma, reactive sputtering, etc.)

Summary and Implications

•

Summary and Implications

Summary of Results

- 3. N atoms react with surface Initial Reaction Probability: $s = 8x10^{-3}$
 - N content a strong function of exposure conditions

Uptake Upon Exposure to N atoms

- Low temperature processing questions
 - –Precursor (TiCl₄)

•Adsorption is monolayer-like over the range of temperatures investigated

- -Radicals (D)
 - •D radicals can reduce Cl content to < 0.3%
- -Radicals (N)
 - •N radicals may incorporate more than 1 monolayer of nitrogen per cycle
- REALCVD ESH impact to be explored through different precursors/processing conditions

- Funding
 - NSF-SRC ERC for Environmentally Benign Semiconductor Manufacturing
 - UC SMART Center for Small Feature Reproducibility
 - SEMATECH Strategic Diagnostics for Plasma Processing
 - NSF
- Equipment/Materials
 - IBM
 - Lam Research Corporation
 - Schumacher
 - Kodak
- Helpful Discussions
 - Art Sherman
 - Stanford
 - K.Saraswat, J.McVittie, P.McIntire
- Undergraduate Research Help
 - M. Chin, E. Chen, D. Bernards