Fate of Fluorine Determination in Exhaust from NF₃-Based CVD Chamber Cleans

Victor Vartanian, Brian Goolsby, Laura Mendicino, Paul Thomas Brown, Dan Babbitt, Jason Vires, Brian Raley *Motorola, DigitaIDNA™ Laboratories* 3501 Ed Bluestein Blvd Austin, TX 78721

> Curtis Laush, Thomas Huang URS Radian 15705 Long Vista Drive Austin, TX 78728

DigitalDNA[™] Laboratories—April 5, 2001—1 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Acknowledgements

Motorola Stan Filipiak, Scott Montague, Facilities

International SEMATECH Walter Worth

> TexLa Gases Jimmy Hebert

Air Products

Ashland Chemicals

Kinetics, Unit Instruments Mark McDaniel

DigitalDNA[™] Laboratories—April 5, 2001 —2 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Overview

- I. Project Objectives
- II. Fluorine Emission Regulatory Issues
- III. AMAT Remote Clean[™] Technology
- IV. Experimental Methodology
- V. Data Analysis
- VI. Summary
- VII. Future Work

DigitalDNA™ Laboratories—April 5, 2001 —3 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Project Objectives

Determine effect of increased F₂ in exhaust system and effect on emissions treatment infrastructure

- Quantify F₂ in segregated acid exhaust duct (FRP) downstream of tool equipped with Remote Clean[™]
- Measure emissions using RGA, FTIR, FCS
 - Quantify F_2 emissions and F_2 to HF conversion efficiency
 - as a function of H_2O -to- F_2 ratio (damper position)
 - reaction time (damper position and sampling point)
- Evaluate FCS technology as alternative to RGA/impinger/IC
- Perform materials compatibility study of exhaust duct polymeric coupons placed in exhaust stream (F₂, HF)
- Determine if OF₂ is produced
- Calculate fluorine mass balance

DigitalDNA[™] Laboratories—April 5, 2001 —4 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Fluorine Emission Regulatory Issues

 $^{\bullet}NF_{3}$ chamber clean F_{2} emissions are 6X $C_{2}F_{6}$

- impacts on scrubber efficiency, fluoride ion in wastewater

- F₂ is not a HAP as defined by EPA in 40 CFR 63
 - F₂ regulated by states (TNRCC) New Source Review (NSR)
 - NSR insures ground level concentrations are below ESL
- ESL (Effects Screening Level) evaluates:
 - potential health effects, odor potential, potential effects on vegetation, corrosion potential \rightarrow not ambient air standards
- ESL for F_2 is very low--2 μ g/m³ (arsine is 1.6 μ g/m³)
- F₂ is a Toxic Release Inventory (TRI) reportable chemical if used or generated above a certain level
 - current thresholds: 10,000 lb used or 25,000 lb generated

 \Rightarrow included are F_2 from NF₃ cleans and etch emissions

Fluorine Reactivity

- Highly electronegative, strongest oxidizer
- Small atomic radius
- Reactivity due to small size (0.71Å) high nuclear charge
- Thermodynamically favored reaction with water:

 $F_{2} + H_{2}O \rightarrow HOF + HF$ $HOF + H_{2}O \rightarrow H_{2}O_{2} + HF$ $HOF + H_{2}O_{2} \rightarrow HF + H_{2}O + O_{2}$ $F_{2} + H_{2}O_{2} \rightarrow 2HF + O_{2}$ Production: 2F + 2H O $\rightarrow 4HE + O_{2}$

- Net Reaction: $2F_2 + 2H_2O \rightarrow 4HF + O_2$
- In caustic media:

2F₂ + H₂O --> 2HF + OF₂

OF₂ production increases in alkaline solutions (esp. NaOH)

DigitalDNA[™] Laboratories—April 5, 2001 —6 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

 \mathbf{A}

DigitalDNA[™] Laboratories—April 5, 2001 —7 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

AMAT Remote Clean[™] Technology

- Compact, lid-mounted, point of use
- Low-field torroidal microwave (2.45 GHz)
- No consumables
- Converts 95-99% NF₃ to atomic fluorine
- No ion bombardment
 - increased chamber kit longevity
- F₂ cleans remote chamber areas
 - increased time between wet cleans
- Faster clean times (30%--DxZ, 65%--DxL)
 - increased throughput
- Improved film deposition uniformity
- Uses up to 50% NF₃ (Ar balance)
 - 0.1 to 4.0 slm total gas flow, 1-8 Torr

DigitalDNA[™] Laboratories—April 5, 2001 —8 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing Remote Clean[™] Unit on DxZ Chamber

Experimental Methodology Continuous air flow measurements made using velocimeter

- Mechanical pump purge regulated by MFC
- Ambient air (45% R.H., 6800 ppm H₂O) introduced to duct

Increased H₂O in duct using humidifier

- Damper controls H₂O-to-F₂ ratio and reaction time
 - H₂O-to-F₂ ratio ranges from 4.4-to-1 to 45.8-to-1
 - Reaction time ranges from 0.15 to 5 sec
- Analytical: extractive FTIR, atmospheric pressure RGA, FCS
 - Pneumatically switched dual-cell FTIR (10 cm, 10 m)
 - All instruments have common sampling point
 - Heat-traced and purged transfer lines (except FCS)
 - RGA and FCS calibrated using "dynamic dilution"
 - Clean recipe used: 700 sccm NF₃, 1400 sccm Ar, 900 sec

DigitalDNATM Laboratories—April 5, 2001—9 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Fluorine Test Lateral Schematic

FRP Test Lateral

cap removed during tests

DigitalDNA[™] Laboratories—April 5, 2001 —11 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Air Flow Measurements

Damper Position (% Open)	Velocity (feet/min)	CFM	Liter/min	Negative Static Pressure (in. H ₂ O)	*H ₂ O-to- fluorine ratio
0.0%	NA	NA	NA	2.600	NA
12.5%	262	23	651	2.600	4.43
25.0%	705	62	1756	2.536	11.94
37.5%	1243	109	3087	2.556	20.99
50.0%	1773	155	4390	2.498	29.85
62.5%	2383	209	5919	2.576	40.25
75.0%	2727	238	6740	2.430	45.83
100.0%	2721	238	6740	2.439	45.83

*Based on 45% r.h., 6800 ppmv H_2O in air

DigitalDNA[™] Laboratories—April 5, 2001 —12 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Duct Material Evaluation

Coupons placed in exhaust stream H G E Α Perform F₂ exposure analysis **HF** immersion $\rightarrow \Delta$ mass

A: PTFE (Teflon)
B: FRP (Fiberglass Reinforced Plastic)
C: FRPP (Flame

Retardant Polypropylene)

D:PVC (Polyvinylchloride)

E: PP (Polypropylene)

F: ATS (Air Tight Systems brand of FRP)

G: PVDF (Polyvinylidene fluoride or Kynar)

H: Flametec (KYTEC PVDF)

I:Corzan

J: Halar

DigitalDNA[™] Laboratories—April 5, 2001 —14 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

FTIR, RGA Sampling Arrangement

DigitalDNA[™] Laboratories—April 5, 2001 —15 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

RGA NF₃ Chamber Clean Emissions

Post-pump measurement

FRP duct measurement --F₂ below detection limit

DigitalDNA[™] Laboratories—April 5, 2001 —17 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

URS Radian Fluorine Chemical Sensor

cart system/ power supply pump laptop DigitalDNA[™] Laboratories—April 5, 2001 -

DigitalDNA[™] Laboratories—April 5, 2001 —18 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

URS Radian Fluorine Chemical Sensor (FCS)

- Real-time, solid-state gas sensing device with ppb-level sensitivity and wide measurement range
- Applicability ranges from ambient air (scrubber) to dry nitrogen (tool effluent) characterizations
- Based on the chemical interaction of F₂ with organic substrate; no known cross interferents
- Fast response, small footprint, no vacuum system required
- Calibration performed at constant flow

DigitalDNA[™] Laboratories—April 5, 2001 —19 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

FCS Operation and Performance Specifications

Measurement range	0 to percentage levels (>10000			
	ppmv)			
Measurement precision	± 2%			
Minimum detection limit	10 ppbv			
Detector response time	msec			
Sample cell operating pressures	mTorr to several atm			
Footprint	cell/detector: 12"x 3"x 3"			
Weight	cell/detector: 2 lbs			
Electrical requirements	24 VDC			
	Ambient air, tool effluent (low			
Applicable sample matrices	pressure or N ₂ diluted), water			
	saturated air or nitrogen streams			
	(wet scrubber outlets)			
	None observed for mixtures			
Chemical interferences	containing SiF ₄ , HF, O ₂ , Cl ₂ , HCl,			
	PFCs and H ₂ O			

DigitalDNA[™] Laboratories—April 5, 2001 —20 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

RGA and FCS Comparison During Clean

DigitalDNA[™] Laboratories—April 5, 2001 —21 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

FCS and FTIR NF₃ Chamber Clean Emissions

DigitalDNA[™] Laboratories—April 5, 2001 —22 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Injection

ports

Analytical Calibration of Fluorine

Mixing Plate

Exhausted Gas Cabinet "Dynamic Dilution" Manifold

Al₂O₂ Scrubber

RGA F₂ Calibration Curve

FCS F₂ Calibration Curve

URS Radian FCS PFA Calibration Duct

Gas flow

DigitalDNA[™] Laboratories—April 5, 2001 —23 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

DigitalDNA[™] Laboratories—April 5, 2001—24 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

DigitalDNA[™] Laboratories—April 5, 2001 —25 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

DigitalDNA[™] Laboratories—April 5, 2001 —27 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Fluorine DRE Summary

3.0 feet Downstream			7.25 feet Downstream			22.3 feet Downstream			28.3 feet Downstream							
Domnor		Maximum	Average			Maximum	Average			Maximum				Maximum	Average	
Sotting	Average	expected F ₂	E		Average	expected F ₂	E	۸E	Average	expected F ₂	Average F ₂		Average	expected F ₂	E	^ E
(% Open)	Flow	Concentration	¹ 2	$\Delta 1_2$	Flow	Concentration	¹ 2	$\Delta 1_2$	Flow	Concentration	Measured	$\Delta 1_2$	Flow	Concentration	¹ 2	$\Delta 1_2$
(// Open)	(slm)	by Dilution	(normal)	(%)	(slm)	by Dilution	(normal)	(%)	(slm)	by Dilution	(ppmv)	(%)	(slm)	by Dilution	(normu)	(%)
		(ppmv)	(ppmv)			(ppmv)	(pprnv)			(ppmv)				(ppmv)	(ppmv)	
12.5	1096	639	58.51	-91	1098	638	16.33	-97	1058	662	13.50	-98	1125	622	8.73	-99
25	1617	433	7.79	-98	1559	449	5.51	-99	1782	393	4.57	-99	1586	441	4.22	-99
50	5275	133	2.81	-98	5116	137	2.25	-98	5254	133	2.21	-98	5267	133	1.86	-99
75	7539	93	1.66	-98	7625	92	1.61	-98	7565	93	1.56	-98	7600	92	1.45	-98

*700 sccm F_2 injected into FRP

Fluorine as a Function of Damper Position and Downstream Distance

Fluorine Mass Balance at First Test Point

3.0 Feet Downstream

Mass Balance (F _{in} /F _{out})
21.4
17.4
35.3
37.8

*90-95% of F detected as HF

DigitalDNA[™] Laboratories—April 5, 2001—28 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Duct Material Evaluation Results

Coupon #	Material	Other Identifier (Tradename etc.)	Initial Coupon Mass (g)	After F ₂ Exposure (g)	After 10% HF Exposure (g)
1	PTFE	Teflon	8.74	8.74	8.74
2	FRP	Fiberglass reinforced plastic	5.13	5.13	5.29
3	FRPP	Flame retardant polypropylene Endura/Empee/Polyflam	7.92	7.92	7.92
4	PVC	Polyvinylchloride	12.38	12.36	12.36
5	PP	Polypropylene	8.04	8.02	8.02
6	ATS	ATS is a manufacturer of FRP using vinyl ester and phenolic resins	4.60	4.58	4.65
7	PVDF	polyvinylidenefluoride/Kynar	22.24	22.24	22.25
8	Flametec	Kytec-PVDF	17.88	17.88	17.89
9	Corzan	Corzan 4910 or CPVC	19.31	19.31	19.32
10	Halar	Halar ECTFE	15.92	15.94	15.92

DigitalDNA[™] Laboratories—April 5, 2001—29 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Project Summary

- Industry trend toward NF₃-based chamber cleans
- Measuring F₂ in an ambient air exhaust system is challenging
- F₂ conversion to HF is thermodynamically favored
 - >90% F₂ converted to HF—humidity is critical factor
 - Increased reaction time did not increase F₂ to HF conversion
- F_2 DRE increased above 98% with H_2 O-to- F_2 ratio >5-to-1
- Fluorine mass balance poor
 - Reaction on stainless steel and FRP wall surfaces may account for significant F₂ degradation
- FCS is a viable analytical technique for F₂ detection
 - more studies needed
- No OF₂ detected

DigitalDNA[™] Laboratories—April 5, 2001 — 30 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Future Work

- Publish International SEMATECH report
- Continue analytical testing of FCS
 - Perform surface analysis of substrates
- Use FCS to evaluate F₂ emissions from other processes

DigitalDNA[™] Laboratories—April 5, 2001 —31 NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

