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Rotating Pad
(length scale: 2000 ~ 10000 nm)

Rotating Platen

Slurry
(length scale: 50 ~ 200 nm)Rotating Patterned Wafer

(length scale: 100 ~ 200 nm)

Generalized Schematic of CMP
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Outline

• Apparatus for real-time measurement of slurry mean residence time (τ)

– Effect of various key parameters on (τ)
• Slurry flow rate
• Cerium oxide concentration in slurry
• Additives
• Pad grooving

– Preliminary fluid dynamics model

• Conclusions
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Note of Caution
Extending The Stribeck Curve to the CMP System

Pad Asperities
~ 15
micrometer

Pad Grooves
~ 500
micrometer

Wafer
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Note of Caution (continued)
Extending The Stribeck Curve to the CMP System

Liquid            CeO2 Abrasive
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The Residence Time Distribution Technique

pad

‘transparent’ wafer

‘yellow-color’ slurry
Injector (ON)

‘blue-color’ slurry
Injector (OFF)

t = t0 (Yellow … ON ; Blue … OFF)

t = t1 (Yellow … OFF ; Blue … ON)

t = t2 (Yellow … OFF ; Blue … ON)

t = t3 (Yellow … OFF ; Blue … ON)

t = t4 (Yellow … OFF ; Blue … ON)

Steady-State Condition

Yellow
Light Green

Green
Turquoise

Blue



The Residence Time Distribution Technique
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Yellow Slurry Input

Blue Slurry Input

Mixed Slurry Output Under Wafer … F–Curve
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Diamond Conditioner

Dual Camera Assembly & Associated Optics

UV Source

Dual-Emission UV-Induced Fluorescence

Slurry Slurry & Fluorescence Dye

Rotating 
Glass Wafer

pad

glass wafer

© = slurry conc



The Residence Time Distribution Technique
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Pad : IC-1000 Perforated
Conditioning : Ex-Situ
Platen & Wafer Speeds : 60 rpm
Wafer Pressure : 28,000 N per square meter (4 PSI)
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Effect of Cerium Oxide Slurry Flow Rate

and Platen Speed on  τ
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Pad : IC-1000 Perforated
Conditioning : Ex-Situ
Platen & Wafer Speeds : 60 rpm
Wafer Pressure : 28,000 N per square meter (4 PSI)
Wafer : SiO2

Effect of Cerium Oxide Abrasive Concentration on  τ
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Abrasive particles act as ‘rollers’ and
speed up the movement of the wafer

relative to the pad

They enhance fluid flow in the
wafer-pad region

3-Body Asperity Contact
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CeO2 without
polycarboxylate

CeO2 with
polycarboxylate

Effect of Anionic Organic Additive on  τ

The anionic organic additive
adsorbs on the cerium oxide

abrasive and further promotes
the movement of the wafer

relative to the pad

This enhances fluid flow
in the wafer-pad region

The additive does not
adsorb on SiO2

This model is consistent with
coefficient of friction studies

Pad : IC-1000 Perforated
Conditioning : Ex-Situ
Platen & Wafer Speeds : 60 rpm
Wafer Pressure : 28,000 N per square meter (4 PSI)
Wafer : SiO2
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Effect of Pad Grooving on  τ
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Conclusion

• Showed that (τ) varied with slurry flow rate and platen speed in a manner
consistent will well-established chemical engineering reactor design
theories

• Showed that (τ) was a strong function of CeO2 abrasive concentration as
well as anionic organic additive content

• Showed that pad surface treatment such as grooving or perforation
significantly affected (τ)

• Developed a preliminary fluid dynamics model which explained these
trends and supported earlier findings on additives and COF


