Fluid Dynamics Characterization of Cerium Oxide Slurries in CMP Using Residence Time Distribution Modeling

Ara Philipossian

University of Arizona Department of Chemical & Environmental Engineering Tucson, AZ USA

© 2001

Generalized Schematic of CMP

Rotating Patterned Wafer

Slurry (length scale: 50 ~ 200 nm)

(length scale: 100 ~ 200 nm) Source ... Degussa WD8 Source ... IMEC V x50 **Rotating Pad** (length scale: 2000 ~ 10000 nm) Source ... Asahi Rotating Platen

Outline

- Apparatus for real-time measurement of slurry mean residence time (τ)
 - Effect of various key parameters on (τ)
 - Slurry flow rate
 - Cerium oxide concentration in slurry
 - Additives
 - Pad grooving
 - Preliminary fluid dynamics model
- Conclusions

Note of Caution

Extending The Stribeck Curve to the CMP System

Note of Caution (continued) Extending The Stribeck Curve to the CMP System

The Residence Time Distribution Technique

Dual-Emission UV-Induced Fluorescence

Dual Camera Assembly & Associated Optics

The Residence Time Distribution Technique

Effect of Cerium Oxide Slurry Flow Rate and Platen Speed on τ

Pad : IC-1000 Perforated Conditioning : Ex-Situ Platen & Wafer Speeds : 60 rpm Wafer Pressure : 28,000 N per square meter (4 PSI)

Effect of Cerium Oxide Abrasive Concentration on τ

Pad : IC-1000 Perforated Conditioning : Ex-Situ Platen & Wafer Speeds : 60 rpm Wafer Pressure : 28,000 N per square meter (4 PSI) Wafer : SiO2

Abrasive particles act as 'rollers' and speed up the movement of the wafer relative to the pad

They enhance fluid flow in the wafer-pad region

Effect of Anionic Organic Additive on τ

Pad : IC-1000 Perforated Conditioning : Ex-Situ Platen & Wafer Speeds : 60 rpm Wafer Pressure : 28,000 N per square meter (4 PSI) Wafer : SiO2

The anionic organic additive adsorbs on the cerium oxide abrasive and further promotes the movement of the wafer relative to the pad

This enhances fluid flow in the wafer-pad region

The additive does not adsorb on SiO2

This model is consistent with coefficient of friction studies

Conclusion

- Showed that (τ) varied with slurry flow rate and platen speed in a manner consistent will well-established chemical engineering reactor design theories
- Showed that (τ) was a strong function of CeO2 abrasive concentration as well as anionic organic additive content
- Showed that pad surface treatment such as grooving or perforation significantly affected (τ)
- Developed a preliminary fluid dynamics model which explained these trends and supported earlier findings on additives and COF