ALD ZrO₂ and HfO₂: Processing Aspects and Dielectric Behavior

H.-S. Kim¹, P.C. McIntyre¹ and K.C. Saraswat²

¹ Department of Materials Science Eng., Stanford University
² Department of Electrical Eng., Stanford University

STANFORD UNIV. Materials Science & Engineering

Hyoungsub Kim

Demand for High-k Materials

Hyoungsub Kim

ALD(Atomic Layer Deposition) CVD

 $ZrCl_4(ad.) + 2H_2O(g) \rightarrow ZrO_2(s) + 4HCl(g)$

- Surface saturation controlled process
- Layer-by layer deposition process
- Excellent film quality and step coverage

STANFORD UNIV. Materials Science & Engineering

- Cold wall and resistive heating type ALD system
- Load-lock system and high vacuum chamber
- Solid (ZrCl₄/HfCl₄) and liquid source (H₂O) delivery system inst alled for individual and nanolaminate structure experiments
- Computer controlled ALD processing

Process Conditions of ALD Process

- Base pressure = ~10⁻⁸ Torr
- Process temperature : 250°C /300°C.
- Process pressure : 0.5 Torr
- Source temperature : H₂O (liquid) = 20°C.

 $ZrCl_4/HfCl_4$ (Solid) = 150°C

Chemical Utilization of ALCVD ZrO₂ Process

- Basic parameters (Based on current research ALD system)
 - A (area of wafer), ρ (density of ZrO_2) = 3.02x10²² (#/cm³)
 - r (growth rate) = 0.52 (Å/cycle) (M.Ritala, Appl. Surf. Sci., 75, p333, 1994)
 - p (vapor pressure of $ZrCl_4$ at $150^{\circ}C$) = 64 (mTorr)
 - v (flow rate of N_2 carrier) = 20 (sccm)
- Total number of molecules deposited

 $N_{DEP} = A \ x \ r \ x \ \rho = 7.16 x 10^{15} \ (\#/cycle) = 7.16 x 10^{15} \ (\#/sec) \ (for \ 1sec \ pulsing)$

Total number of molecules used for ALD process

$$N_{FLOW} = N_A x pv/RT = 4.85x10^{20} (\#/sec)$$

Chemical utilization factor

 $F = N_{DEP} / N_{FLOW} \sim 1.5 \times 10^{-5}$: for 3 in wafer

 $\sim 2.4 \times 10^{-4}$: for 12 in wafer

This can be increased by decreasing flow rate of precursor through more efficient chamber design

Hyoungsub Kim

Growth Kinetics of ALD ZrO₂ Process

- **Typical linear growth rate : ~0.06 nm/cycle.**
- Independent of H₂O pulsing time.
- Excellent uniformity : < 0.1nm across 3" wafer.
- Growth is insensitive to ZrCl₄ pulsing time and flow rate : signature of ALD process.

Effect of H₂O Flow on Growth Rate & Uniformity

- **Growth rate is linearly dependent on H₂O flow rate.**
- Uniformity is primary affected by the sufficient dosing of H₂O in HfO₂ process.

STANFORD UNIV. Materials Science & Engineering

I-V Characteristics of ALD ZrO₂ with Thickness

- ZrO₂ film was grown on chem. oxide surface w/o HF strip
- Films were deposited at 250°C with various thickness.

STANFORD UNIV. Materials Science & Engineering

<u>Leakage Current Mechanism of ALD ZrO</u>₂ <u>on Chemical Oxide</u>

- Thick oxide is more sensitive to temperature.
- Thick oxide shows high temp. dependence at low field region and low temp. dependence at high field region.

STANFORD UNIV. Materials Science & Engineering

<u>Leakage Current Mechanism of ALD ZrO</u>₂ <u>on Chemical Oxide</u>

Pt gate electrode

- Temperature dependency of thick ZrO₂ oxide follows the trapassisted tunneling model" (M. Houssa et al., JAP 87, 8615 (2000))
- High number of bulk traps might originate from high concentration of chlorine or defects due to the low temperature deposition.
 : large hysteresis (? V~230mV) from CV measurement, which corresponds to N_{trap}=~2.3x10¹² (cm⁻²)

C-V Characteristics of ALD ZrO₂ on Chemical Oxide

- Series Pt electrode/ZrO₂/p-Si/Backside Al structure.
- Resistance was numerically corrected using two different frequency measurements (K.J.Yang et al., IEEE Elec. Dev. Lett. 66, 1500, 1999).
- Thinner sample shows less hysteresis.
- Preliminary electrical results in keeping with data from state-of-the-art ALD gate dielectrics (C.M. Perkins et al., Appl. Phys. Lett. 78, 2357, 2001)

<u>C-V & IV Characteristics of ALD HfO</u> <u>on Chemical Oxide</u>

First ALD HfO₂ sample shows good C-V curve shape and low leakage current (EOT=1.8 nm @-2V on chemical oxide).

STANFORD UNIV. Materials Science & Engineering

Microstructure of As-grown ALD ZrO₂

- ZrO₂ film was grown on chemical oxide surface w/o HF strip.
- Film deposited at 250°C contains mainly polycrystalline ZrO_{2.}
- Indexing of TEM diffraction pattern reveals <u>Tetragonal ZrO</u>₂
- Interface and surface roughness obtained from TEM and AFM are encouraging.

Microstructure of As-grown ALD HfO₂

- HfO₂ film was grown on chemical oxide surface w/o HF strip.
- Film deposited at 250°C are <u>amorphous</u> according to HRTEM image and electron diffraction.
- Interface and surface roughness obtained are also encouraging.

Future Experimental Plan

