# Semiconductor Related Programs at NIST

J. V. Martinez de Pinillos, Ph.D.

Senior Scientist

Office of Microelectronics Programs

## Outline

- Brief Introduction to NIST
- Areas of Work
- Applications
- Summary

## National Institute of Standards and Technology

NIST strengthens the U.S. economy and improves the quality of life by working with industry to develop and apply technology, measurements, and standards.

#### **NIST Assets Include:**

- National measurement standards
- 3,200 employees
- \$720 million annual budget
- 1,200 industrial partners
- 2,000 field agents
- 1,600 guest researchers
- \$1.6 billion R&D partnerships with industry
- Baldrige Quality Award



## **NIST Major Programs**

### NIST Laboratories

Nation's ultimate reference point for measurements and standards to support industry, science, health care, safety, defense.

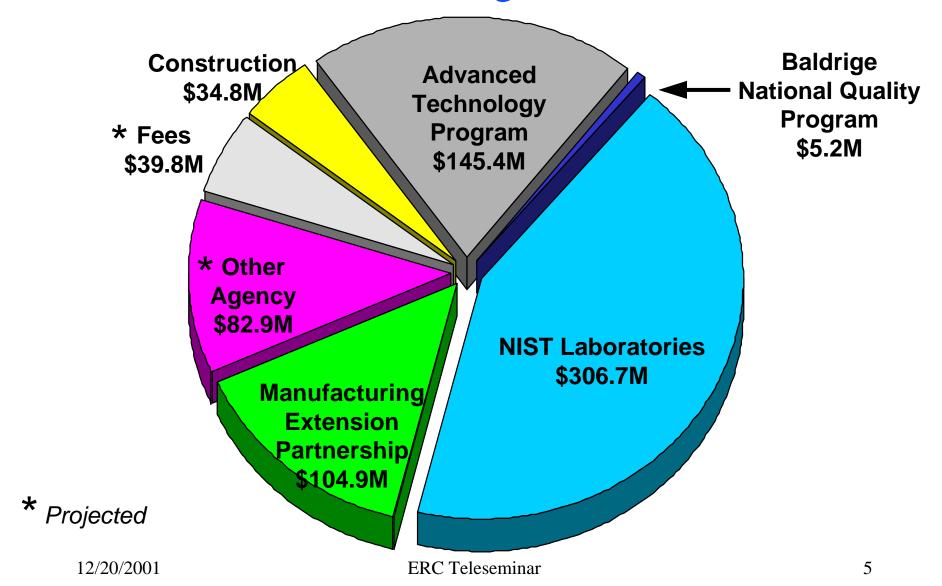
# Advanced Technology Program

12/20/2001

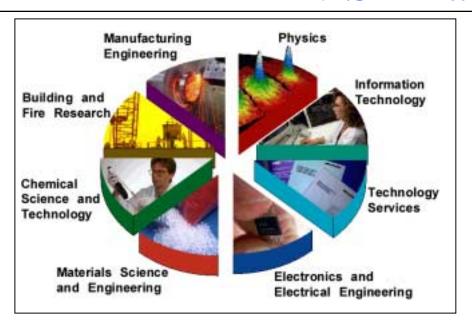
R&D partnerships with private sector to develop broadly beneficial new technologies.

# **Baldrige National Quality Program**

Annual Baldrige awards in manufacturing, service, small business, education, and health care promote business excellence.


# Manufacturing Extension Partnership

Nationwide network of extension centers assisting the Nation's 385,000 smaller manufacturers in all 50 states and Puerto Rico.


ERC Teleseminar

## **NIST FY2001**

Budget



## **NIST Laboratories**

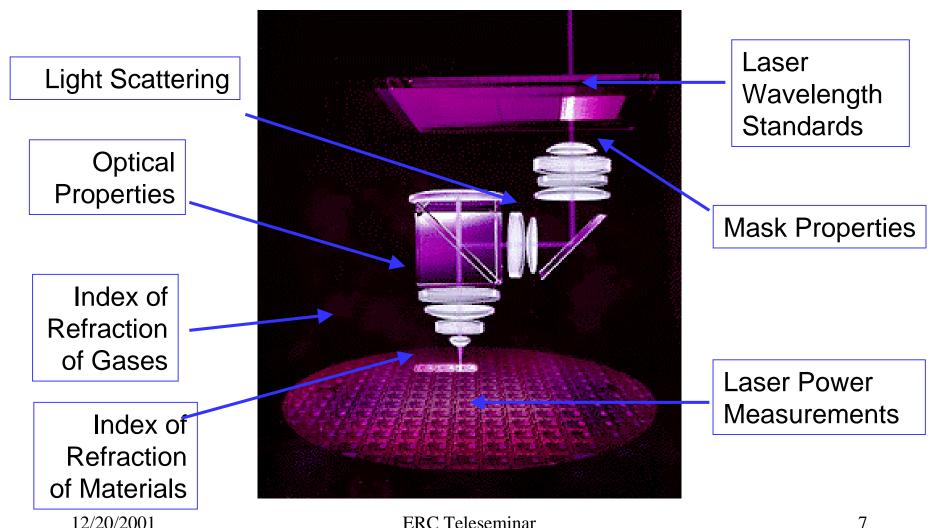


- Measurements and standards are critical enablers of the technology infrastructure
- Serve the American people through support of all major economic and scientific activities including:

#### Health care

Standards for clinical tests, radiation diagnostics and treatment, many others.

#### Manufacturing


- Semiconductors, automotive, discrete parts, many others.
- Dimensional standards, chemical and physical properties data, many others.

#### Information technology & telecommunications

 Standards and tests for computer security, interoperability, software performance, communications infrastructure, many others

#### **NIST Measurements & Standards for Manufacturing**

### NIST support for the entire lithography process to manufacture microelectronic devices



**ERC** Teleseminar

## **Areas of Work**

- Lithography Metrology
- Critical Dimension and Overlay Metrology
- Thin Film and Shallow Junction Metrology
- Interconnect and Packaging Metrology
- Wafer Characterization and Process Metrology
- Test Metrology

## Areas of Work (2)

- Lithography Metrology
  - ☐ 3 Projects
- Critical Dimension and Overlay Metrology
  - 6 Projects
- Thin Film and Shallow Junction Metrology
  - 3 Projects

## Areas of Work (3)

- Interconnect and Packaging Metrology
  - 8 Projects
- Wafer Characterization and Process Metrology
  - ☐ 10 Projects
- Test Metrology
  - 2 Projects

## Time Base of Programs





# **Applications**

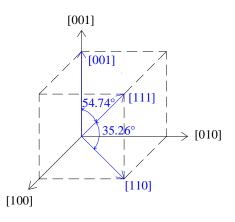
# Intrinsic Birefringence of CaF<sub>2</sub>

### **Birefringence in Cubic Crystals**

#### I. Stress-Induced Birefringence

grown-in or externally applied (mounts, gravity, etc.)

- variable magnitude and orientation (sample-to-sample and within sample)
- weak dispersion visible-UV (NIST-SEMATECH 157 Review 11/00)
- can in principle be reduced to any desired value


#### II. Intrinsic Birefringence

due to symmetry breaking effect of finite q of photon at short  $\lambda$  preliminary measurements in CaF<sub>2</sub> (above 157nm and 193nm target values)

- magnitude and orientation fixed by crystal (no sample dep., uniform)
- strong dispersion  $\sim 1/\lambda^2$
- CANNOT be reduced! (inherent property of crystal)
  (but since fully predictable and symmetric, can be corrected for in principle)
  Has been measured in, e.g., Si¹ and GaAs²
  - <sup>1</sup>J. Pastrnak and K. Vedam, Phys. Rev. B **3**, 2567 (1971).
  - <sup>2</sup>P.Y. Yu and M. Cardona, Solid State Commun. 9, 1421 (1971).

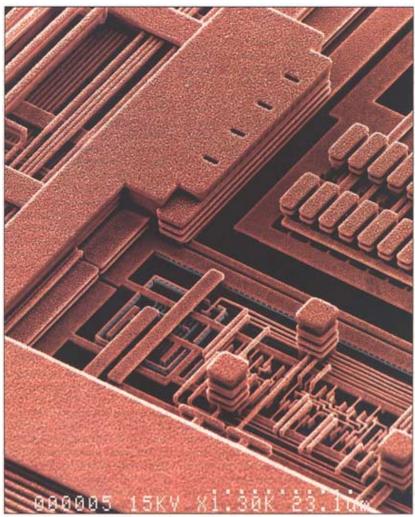
## **Implications**

- 1) Intrinsic birefringence  $\Delta n(157 \text{ nm}) \approx 6.5 \times 10^{-7} \text{ (6.5 nm/cm)}$ 
  - exceeds birefringence target value for 157 nm lithography (1 nm/cm) (1st Int. Symp. On 157 nm Lithography, May 2000)
- 2) Intrinsic birefringence  $\Delta n(193\text{nm}) = 3.6 \times 10^{-7} \text{ (3.6 nm/cm)}$ 
  - may exceed birefringence requirements of 193 nm lithography
- 3)  $\Delta n = 0$  for [111] direction (lens orientation)
  - but [110] only  $\theta = \cos^{-1}(2/3)^{1/2} = 35.26^{\circ}$  away
  - concern for high NA systems
- 4) Good news: effect completely predictable and symmetric
  - thus can correct for in principle
- 5) Need to know the full angle dependence of the effect
  - fortunately this is completely determined by symmetry alone

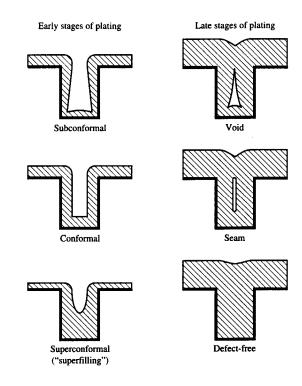




Measurements of Birefringence of CaF<sub>2</sub> in the UV


|  | Wavelength (nm) | Line Source | $10^7 \times (n_{<\bar{1}10>} - n_{<001>})$ |  |  |  |  |
|--|-----------------|-------------|---------------------------------------------|--|--|--|--|
|  | 365.062         | Hg I        | $-0.19 \pm 0.08$                            |  |  |  |  |
|  | 253.652         | Hg I        | $-1.2 \pm 0.1$                              |  |  |  |  |
|  | 193.09          | CI          | $-3.6 \pm 0.2$                              |  |  |  |  |
|  | 184.95          | CI          | $-4.5 \pm 0.3$                              |  |  |  |  |
|  | 175.19          | CI          | $-5.2 \pm 0.2$                              |  |  |  |  |
|  | 165.72          | CI          | $-5.8 \pm 0.2$                              |  |  |  |  |
|  | 156.10          | CI          | $-6.5 \pm 0.4$                              |  |  |  |  |

$$\mathbf{q} \parallel [001] \rightarrow \Delta n = 0$$


$$\mathbf{q} \parallel [111] \rightarrow \Delta n = 0$$

# Electroplating of Cu

# Electrolytic Copper On-Chip Metallization



[1] IBM Corp.'s new CMOS 7S process for manufacturing ICs uses copper for its six levels of interconnections, and has effective transistor channel-lengths of only 0.12 µm. It is the first commercial fabrication process to use copper wires [see "The Damascus connection," p. 25].



Physical Vapor Deposition (PVD) Chemical Vapor Deposition (CVD) Electrodeposition

"superconformal deposition"

#### The Problem: Copper Metallization – 5-10 Years Out

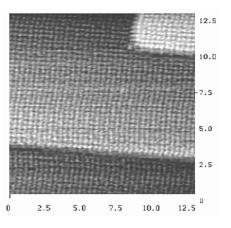
ITRS --> several interconnect roadblocks at 70 nm node (2008)

Input: 1999 Advanced Metallization Conf.
Panos Andricacos (IBM)
Richard Alkire (Illinois)
Alan West (Columbia)
Tom Ritzdorf (Semitool)

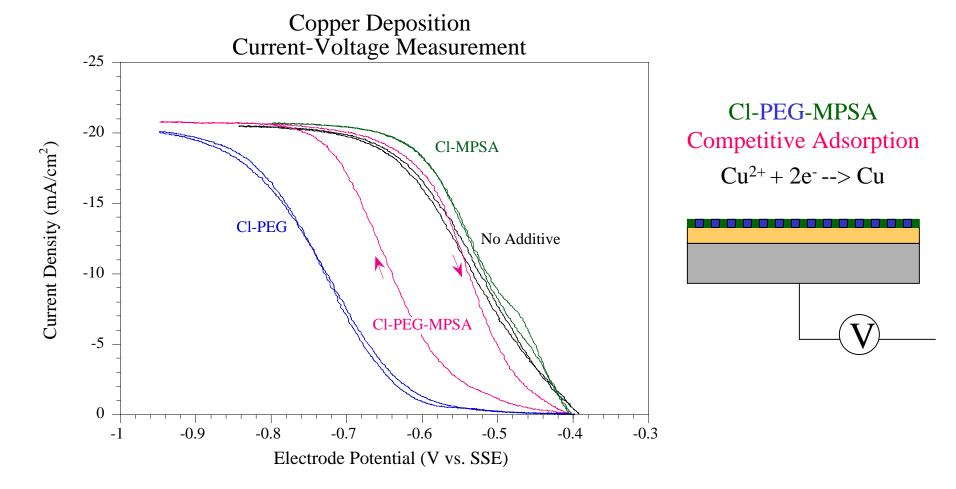
# Superconformal Deposition extendibility beyond 100 nm (?) lack of fundamental understanding

#### Why NIST? Expertise

electrochemistry surface characterization electron microscopy lithography


#### Environment

fosters collaboration


3+ years out

#### **Broad Application**

fundamental electrodeposition issues measurement opportunities MEMS/NEMS 150
100
Cu(100)
50
Cu(111)
Cu(110)
-100
-200
-250
-1
-0.8
-0.6
-0.4
-0.2
0
Potential V(SCE)



## Cl-PEG-MPSA — Hysteresis in Cu Kinetics



# All data needed for the model obtained directly from hysteresis measurements on *planar electrodes*

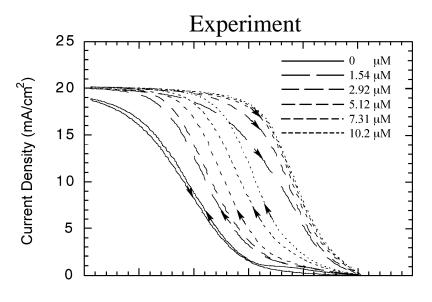
Local time-dependent surface coverage:

$$\frac{d\theta}{dt} = k_{eff}C_{i}\left(1\text{-}\theta\right) + \frac{i\Omega}{2F}\kappa\theta$$

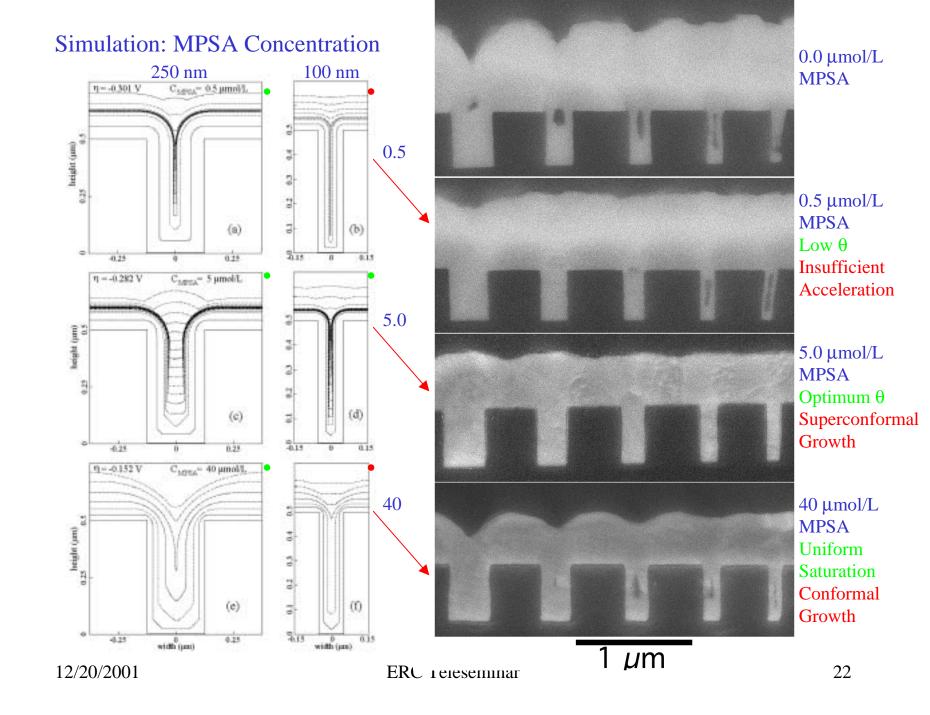
 $\kappa = 0$  on flat electrodes,

$$\frac{d\theta}{dt} = \frac{k_{eff}C_{i}\left(1-\theta\right)}{\Gamma} = \frac{D_{MPSA}\left(C_{MPSA} - C_{i}\right)}{\Gamma}$$

 $D_{MPSA} = MPSA$  diffusion coefficient


 $C_{MPSA} = MPSA$  bulk concentration

 $\Gamma$  = maximum MPSA coverage


 $\delta$  = diffusion layer thickness

#### Electrochemical kinetics for Cu deposition:

$$i(\theta) = \frac{i_o(\theta)}{i_L} \left( 1 - \frac{i(\theta)}{i_L} \right) exp \left( \frac{-\alpha(\theta)F}{RT} \; \eta \right)$$







#### Accomplishments/Impact

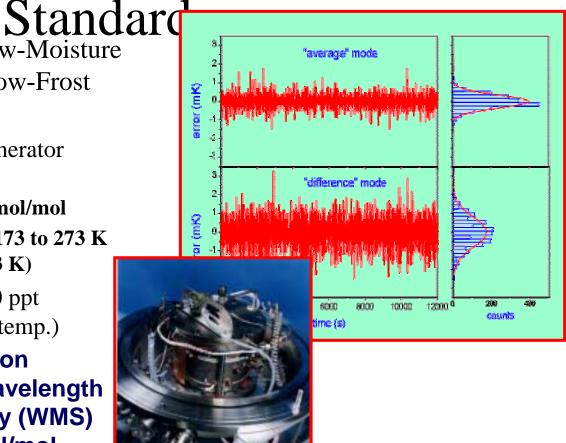
Developed a cross-laboratory program on measurements and modeling for superconformal copper deposition (MSEL, EEEL, CSTL)

- developed the first non-proprietary bath that yields superfill down to dimensions of 60 nm and aspect ratios of 3:1
- demonstrated that inhibition alone is *not* sufficient to ensure superfill in direct contradiction to current thinking and models

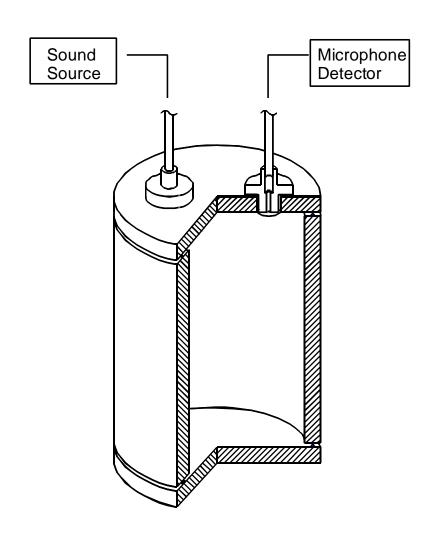
New time saving measurement, on *planar substrates*, for determining superfill efficacy

- demonstrated one-to-one correlation between I-V hysteresis, resistance drop (recrystallization rate) and superfill efficacy of electrolytes
- incorporated into control software by ECI Technology, a leading supplier of analytical plating and processing tools, to complement their CVS (cyclic voltammetric stripping) quality control technology.

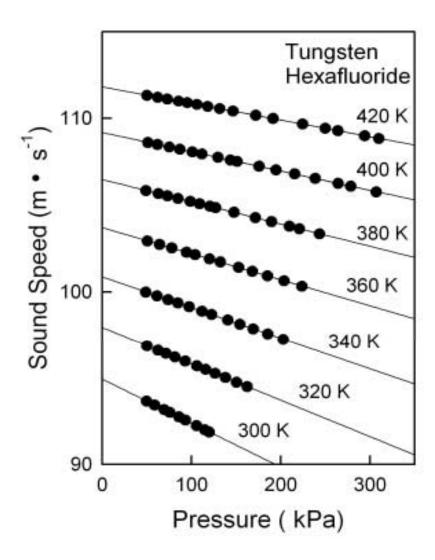
#### Theory predicts processing windows for superconformal deposition


- alternative to the transport-limited inhibition model
- provide the theoretical underpinning for filling nanometer scale features

## Moisture Calibration


## Low Concentration Humidity

 Developed Standards for Low-Moisture Concentrations in Gases - Low-Frost Point Generator (LFPG)


- High Precision Moisture Generator
  - Humidity levels:
     5 nmol/mol to ~ 5,000 μmol/mol
  - Operating temperature: 173 to 273 K (±2.5 mK stability at 173 K)
- Planned improvements 200 ppt (153K or -120° C operating temp.)
- Calibrated laser absorption hygrometer based on Wavelength Modulation Spectroscopy (WMS) between 5 and 2500 nmol/mol
- Incorporated WMS system as a check standard into the LFPG system as a null detector between LFPG and other humidity generators, e.g., permeation tube generators



# Thermodynamic Properties of Reactive Gases



- Measurements of the speed of sound in reactive gases yield values for thermodynamic properties of the gases.
- These properties had only been estimated in the past due to the difficulties associated with making the measurements directly.



| allene                  | C <sub>3</sub> H <sub>4</sub>     | phosgene                  | COCI <sub>2</sub>                 |                        |
|-------------------------|-----------------------------------|---------------------------|-----------------------------------|------------------------|
| arsenic trifluoride     | AsF <sub>3</sub>                  | phosphorous trifluoride   | PF <sub>3</sub>                   |                        |
| arsine                  | AsH <sub>3</sub>                  | phosphorous pentafluoride | PF <sub>5</sub>                   |                        |
| trimethyl arsine        | As(CH <sub>3</sub> ) <sub>3</sub> | phosphine                 | PH <sub>3</sub>                   |                        |
| diborane                | B <sub>2</sub> H <sub>6</sub>     | sulfur dioxide            | SO <sub>2</sub>                   | RED - measurements     |
| pentaborane             | B <sub>5</sub> H <sub>9</sub>     | stibine                   | SbH <sub>3</sub>                  | completed              |
| boron trichloride       | BCl <sub>3</sub>                  | silane                    | SiH <sub>4</sub>                  |                        |
| bromine                 | Br <sub>2</sub>                   | disilane                  | Si <sub>2</sub> H <sub>6</sub>    | GREEN - Identified by  |
| carbon monoxide         | CO                                | silicon tetrachloride     | SiCl <sub>4</sub>                 | industry as a priority |
| chlorine                | Cl <sub>2</sub>                   | silicon tetrafluoride     | SiF <sub>4</sub>                  | for FY02               |
| chlorine trifluoride    | CIF <sub>3</sub>                  | titanium tetrachloride    | TiCl <sub>4</sub>                 |                        |
| ethylene oxide          | C <sub>2</sub> H <sub>4</sub> O   | tungsten hexafluoride     | WF <sub>6</sub>                   | BLACK - Identified as  |
| hydrogen bromide        | HBr                               | uranium hexafluoride      | UF <sub>6</sub>                   | next priority level    |
| hydrogen chloride       | HCI                               | vinyl bromide             | C <sub>2</sub> H <sub>3</sub> Br  |                        |
| hydrogen fluoride       | HF                                | vinyl fluoride            | C <sub>2</sub> H <sub>3</sub> F   |                        |
| hydrogen sulfide        | H <sub>2</sub> S                  | vinyl chloride            | C <sub>2</sub> H <sub>3</sub> Cl  |                        |
| molybdenum hexafluoride | MoF <sub>6</sub>                  | trimethyl gallium         | Ga(CH <sub>3</sub> ) <sub>3</sub> |                        |
| nitric oxide            | NO                                | triethyl gallium          | $Ga(C_2H_5)_3$                    |                        |
| nitrous oxide           | NO <sub>2</sub>                   | trimethyl indium          | In(CH <sub>3</sub> ) <sub>3</sub> |                        |
| nitrogen trifluoride    | NF <sub>3</sub>                   |                           |                                   |                        |

## Summary

- NIST has an extensive set of programs in support of the semiconductor industry
- These programs address issues across all the important technological areas needed by the industry
- NIST collaborates intensely with ISMT, companies, and universities
- More information can be obtained by calling us (301-975-4400) or going to www.nist.gov or www.eeel.nist.gov/omp