Fluorocarbon Gases for Advanced Dielectric Etch Applications: A Chemical Manufacturer's Perspective

> Michael Mocella DuPont Electronic Gases michael.mocella@usa.dupont.com

DuPont Electronic Gases

No one ever asks ...

Why are my dielectric etch gases so cheap?

DuPont Electronic Gases

But the reason is ...

Fluorocarbon etch gases have been either large-volume industrial products, or co-products in such processes

Products	Co-products
CH_2F_2	CF_4 (from CF_2Cl_2)
$C_2H_2F_4$	CHF ₃ (from CHF ₂ Cl)
C_2HF_5	C_2F_6 (from C_2F_5Cl)
C_3F_6	C_4F_8 (from Teflon®)

The current challenge

- Damascene processing requires high selectivity etching of silicon dioxide versus closely-related compounds (especially silicon nitride)
- This requires precise control of the relative fluoropolymer formation rates on the films
- It is commonly believed that compounds with F/C ratios of 2 and below best serve this requirement

Summary of options at $F/C \le 2$

- PFCs (perfluorocompounds)
- HFCs (hydrofluorocompounds)
- OFCs (oxyfluorocompounds)
- UFCs (unsaturated fluorocompounds)

Availability & economics of these gases may not follow the traditional (existing product/co-product) model

PFC options

Compound	Availability	Applications
$C_2F_6(116)$	Commercial,	numerous – see Application Guide*
	product	
c-C ₃ F ₆ (C216)	Not	
	commerical	
$C_3F_8(218)$	Commercial,	JVST B, 14, 3470 (1996); JVST A, 14, 1092
	co-product	(1996)
c-C ₄ F ₈ (C318)	Commercial,	numerous – see Application Guide*
	co-product	

* www.dupont.com/zyron

HFC options

Compound	Availability	Applications
$CH_2F_2(32)$	Commercial,	numerous – see Application Guide*
	product, flammable	
CH ₃ F (41)	Commercial,	US 6,025,255; US 5,942,446; US
	product, flammable	5,906,948
CH ₂ FCF ₃ (134a)	Commercial,	multiple – see Application Guide*
	product	
H ₃ CCF ₃ (143a)	Commercial,	
	product, flammable	
H_3CCHF_2	Commercial,	JJAP, 39, 4666 (2000)
(152a)	product, flammable	
F ₃ CCH ₂ CF ₃	Commercial,	US 6,183,655; US 6,120,697
(236fa)	product	
$CF_3CH_2CHF_2$	Commercial,	US 6,120,697
(245fa)	product	
$F_3C(CHF)_2CF_2CF_3$	Commercial,	
(4310meee)	product	

* www.dupont.com/zyron

OFC options

Compound	Availability	Applications
$CF_3CF(O)CF_2$	Manufactured,	US 5,928,963
(HFPO)	product; toxic	
(CF3)2CO (HFA)	Manufactured,	
	product; highly	
	toxic	
C_4F_8O	Commercial,	
	co-product	
$C_2F_2O_2$	Potentially	JECS, 148, G141 (2001); WO 99/34429
(oxalyl		
fluoride)		

A substantial number of fluorocompounds containing ether (C-O-C) and carbonyl (C=O) linkages are reported in Japanese studies

UFC options

Toxicity concerns are typically larger for this class versus the others

Compound	Availability	Applications
C_2F_2	No, unstable	
C ₂ F ₄ (TFE)	Manufactured, product; reactivity	US 5,874,013; JVST B, 18, 166 (2000); JVST A, 14, 2127 (1996); R. Chatterjee et al, SEMICON Southwest 2001 PFC Seminar
CF ₃ CF=CF ₂ (HFP)	Commercial, product	multiple – see Application Guide*
CF ₃ OCF=CF ₂ (PMVE)	Manufactured, product	CA 134, 230651
F2C=CFCF=CF2 Commercial, co-product		US 6,174,451
(CF3)C=CH2 Commercial, product		
$c-C_5F_8$ Commercial, intermediate		US 6,159,862; US 6,069,092
$F_{3}CC(F)=C(F)CF_{2}CF_{3}$ (PF2P)	Manufactured, intermediate	* www.dupont.com/zyron

DuPont Electronic Gases

Conclusions

- Many compounds available at $F/C \le 2$
- Compound uniqueness versus process development flexibility/options?
- The attributes of optimum compounds for advanced dielectric etch are not well understood or predictable
- Empirical process development seems likely to continue as a dominant process specification methodology