

Quantum Chemistry Study of ZrO₂ ALD

Yuniarto Widjaja

Departments of Chemical Engineering

Charles B. Musgrave

Departments of Chemical Engineering & Materials Science and Engineering Stanford University, Stanford, CA 94305

Introduction

An early computing machine built from mechanical gears and a state-of-the art IBM chip with 0.25 micron features. (Source: http://www.qubit.org)

P.A. Packan, Science, 1999

- The scaling of metal-oxide-semiconductor (MOS) devices to subnanometer feature sizes requires thin gate insulators.
- Leakage currents caused by electron tunneling increases exponentially with decreasing dielectrics thickness.
- Using high- κ materials allows deposition of thick films with an effective thickness equivalent to thin SiO₂ films.

Atomic Layer Deposition

Atomic Layer Deposition (ALD) occurs through a sequence of **selflimiting** surface reaction steps

Schematic representation of ALD using self-limiting surface chemistry and an AB binary reaction sequence (SM George, AW Ott, and JW Klaus, J. Phys. Chem, 1996)

- ALD allows:
 - Atomic layer control because of the self-limiting nature of the surface reactions
 - Perfect conformality
- Understanding of surface chemistry in ALD is very important!
- Here, the ALD of ZrO_2 using $ZrCI_4$ and H_2O is investigated:

 $ZrCl_4 + 2 H_2O \rightarrow ZrO_2 + 4 HCI$

Quantum Chemistry

- Quantum chemistry:
 - first-principles description of molecular systems
 - allows accurate description of chemical bonds
 - allows detailed investigation of reaction mechanism

Stanford University Department of Chemical Engineering

Hydrogen termination.

Calculational Details

- Method: KMLYP DFT
 - Good accuracy
 - → Computational expense $\propto N^3$
- Basis Set: LANL2DZ ECP
 - Los Alamos LANL2 effective core potentials (ECP)
 - Valence double-ζ
- Constraints
 - Constraints are introduced by fixing the terminating H atoms in the ideal positions

- ZrCl₄ dissociates into ZrCl₃(a) and Cl(a) on the Si(100)-(2×1) surface
- This results in **Zr-CI*** and **Si-CI*** surface sites

Initial Adsorption and Decomposition Reaction of H₂O on the Si(100)-(2×1) Surface

Calculated energy profile for the dissociation process of water on Si(100) and atomic geometries at four representative points (JH Cho et al., PRB, 2000)

- H₂O decomposes to form OH(a) + H(a) on the Si(100)-(2×1) surface, resulting in a Si-OH* and Si-H* surface site.
- Subsequent H₂O reactions have also been investigate, resulting in -OH terminated surface. (JK Kang et al., J. Appl. Phys, submitted)

Subsequent ZrO₂ ALD Reactions Reaction of H₂O with the Zr-CI* surface site

Reaction of H_2O with the Zr-Cl site results in a Zr-OH* site in place of the Zr-Cl* site

Trapping-mediated mechanism:

- 1. Zr-CI*-H₂O complex is formed
- 2. HCI(a) is formed from one H atom from H₂O and one CI atom from ZrCI₃
- 3. HCI desorbs

The H₂O complex is very stable!

Stanford University Department of Chemical Engineering

- Direct dissociation reaction. • No stable complex formed
- Reaction with H₂O with the Si-CI site results in a Si-OH* site in place of the **Si-CI*** site

Subsequent ZrO₂ ALD Reactions Reaction of ZrCl₄ with the Si-OH* surface site

Trapping-mediated mechanism:

- 1. ZrCl₄-Si-OH* complex is formed
- 2. HCI(a) is formed from one H atom from Si-OH and one CI atom from ZrCl₄

3. HCI desorbs

Reaction of **ZrCl**₄ with the **Si-OH** surface site results in a Zr-Cl* bonds in place of Si-OH*

Subsequent ZrO₂ ALD Reactions Reaction of ZrCl₄ with the Si-H* surface site

Summary on Initial Growth of ZrO₂

- First layer formation:
 - ZrCl₄(g) dissociates upon adsorption into ZrCl₃(a) + Cl(a), resulting in Zr-Cl* and Si-Cl* sites.
 - ➡ H₂O(g) forms OH(a) + H(a) upon dissociation, creating Si-OH* and Si-H* sites.
- Second layer formation:
 - Reactions on Zr-Cl*, Si-OH* and Si-H* follow trapping-mediated mechanism.
 - Reaction on Si-H* has a high barrier. This explains the slow growth on Hterminated surface.
- Interface structure:
 - ➡ SiO₂-like bonding is more stable than silicide-like bonding.

Subsequent ZrO₂ growth Reactions on Zr-OH* and Zr-CI* sites

- As-deposited films have been shown to be **amorphous**.
- Clusters are constructed not according to any specific crystal structures, but designed to investigate the electronic effects of neighboring groups.
- Surface strain is described by two 10-member Zr-O rings.

Potential Issues

Stable Complex formation

- Raising the temperature brings up new issues:
 - Activation energy for the adsorbed complexes desorption becomes smaller than the activation energy for the dissociation reaction
 - More favorable for adsorbed complex to desorb and no reaction will occur on the surface or less than a monolayer coverage on the surface
 - Solution: increase the gaseous pressure to minimize desorption of the adsorbed molecules from the surface
 - Low-thermal budget processing might be desired

The ALD of ZrO_2 using $ZrCI_4$ and H_2O have been investigated. The binary reaction can be divided into two half-reactions:

 \Rightarrow Zr-OH* + ZrCl₄ \rightarrow Zr-O-ZrCl* + HCl

- \Rightarrow Zr-Cl* + H₂O \rightarrow Zr-OH* + HCl
- Detailed atomistic mechanisms of the deposition along with the energetics have been studied:
 - First layer on the clean Si(100)-(2×1) surface, resulting in four reaction sites: Zr-Cl*, Si-Cl*, Si-OH*, and Si-H.
 - Subsequent growth of ZrO₂ on both Zr-OH* and Zr-CI* sites
- Understanding of the surface reactions reveals potential problems:
 - Stable complexes preventing further reactions
 - Raising the temperature results in more adsorbed complexes desorbing than further dissociate

