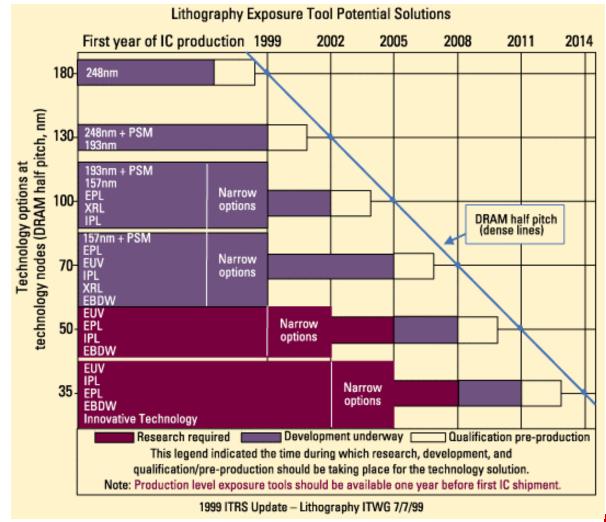
Resist Platforms for 157 nm Lithography


Materials Science & Engineering

Christopher K. Ober

Department of Materials Science & Engineering, Cornell University, Ithaca, NY 14853

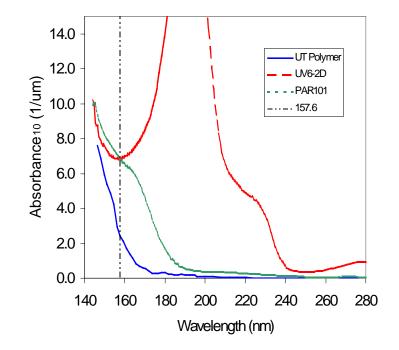
Lithography Requirements

The Technical Challenges

Materials Science & Engineering

A high resolution, single layer resist sensitive to 157nm light with adequate etch resistance and low defect density and low out-gassing;

- "high resolution" means <100 nm dense features and <70 nm isolated features;
- "single layer resist" means <300 nm thickness dictated by depth of focus, resist collapse, and resist transparency;
- "sensitive to 157-nm light" i-line, 248 nm, and 193 nm resins are opaque to 157 nm light at thickness >80 nm; new resins and new amplification mechanisms may be necessary;
- "adequate etch resistance" means as or more resistant to etch than thicker 193 nm resists;
- "low defect density" is especially important for the thinner films; and
- "low out-gassing" means no redeposition on critical optical surfaces.


Other approaches, e.g. bilayer, hard mask, and CARL are attractive only because they may meet the technical challenges better or sooner than single layer resist.

Courtesy, Gene Feit (Sematech)

Problems with Using Existing Resist

- High absorbance at 157 nm requires using thin resists.
 - Thin layers have more defects.
 - Etch resistance is questionable
 - Hard masks may offer solution.
 - EUV ultra-thin resist studies have provided useful data
- Resist contrast may be affected by cross-linking.
 - Positive 248 nm resists turf pogative at ~10x clearing dose

Courtesy, Gene Feit (Sematech)

Target Properties

Positive-Tone Single Layer Resists for 157 nm Lithography

Requirements	Targets	Strategies
Transparency	$A < 2 \ \mu m^{-1}$	Hydrofluorocarbon >30% fluorination
Acidic group for base solubility	р <i>К</i> _а ~ 10	Fluorocarbinols
Etch resistance	Comparable to Novolac system	Alicyclic structures
Imaging group	Cleavable by PAG	Alkoxy alkyl ethers

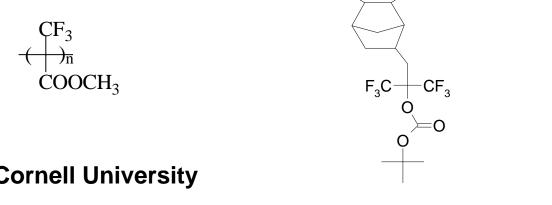
Absorption Coefficients of Various Polymers at 157 nm and Corresponding Film Thickness with OD = 0.4

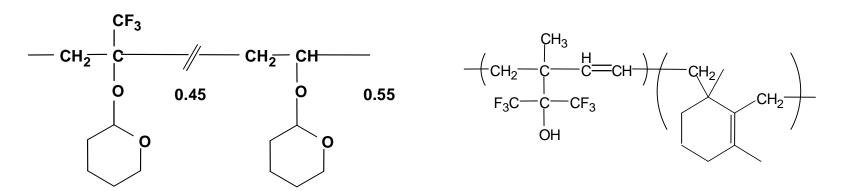
Polymer	A, μm^{-1}	L (OD = 0.4), nm
<u>Si–O backbone</u>		
Poly(hydrosilsesquioxane)	0.06	6667
Poly(dimethylsiloxane)	1.61	248
Poly(phenylsiloxane)	2.68	149
Carbon backbone		
Fluorocarbon	0.70	571
Hydrofluorocarbon, 30% F	1.34	298
Poly(methylmethacrylate)	5.69	70
Poly(norbornylmethacrylate)	6.67	<u>60</u>
Poly(adamantylmethacrylate)	6.73	59
193 nm Cyclo-olefin resist	8.0	50
193 nm Acrylic resist	8.7	46
248 nm Phenolic resist	8.3	48

From Kunz et al. J. Vac. Sci. Technol. B 1999, 17, 3267

World Wide Interaction

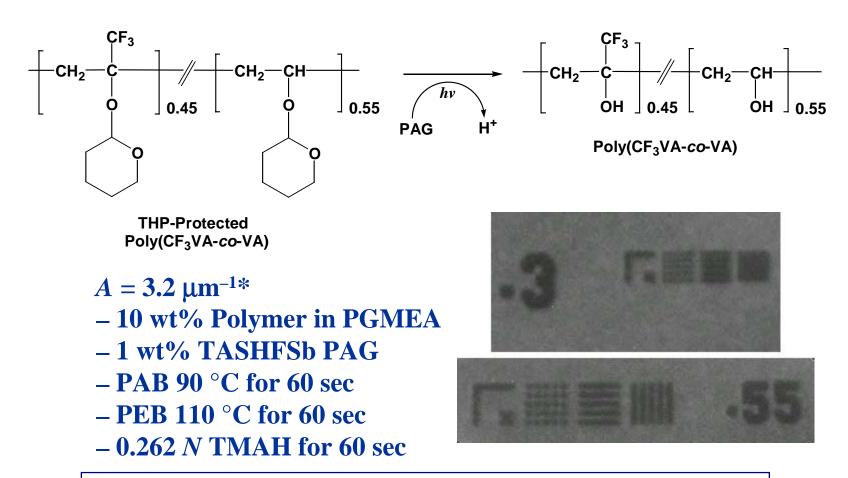
Global Linkages nm Research & Development 157 Fused Silica Consortia Pellicles Asahi Glass Nikon ASET DuPont. Shin-Etsu German Initiative Corning NSG Mitsui Chemical IMEC Shin-Etsu Heraeus Universities International SEMATECH Berkeley Cal-Tech Resist SELETE SRC ARCH Chem. Shin-Etsu Clemson Cornell Exposure Tools Massachusetts Institut Clariant Shipley ASML Nikon Technology/Lincoln La DuPont Sumitomo Pacific Northwest CANON SVGL JSR TOK National Labs Exitech Ultratech Rochester Institute of OHKA Technology F2ExcimeLaser Coatings University of Texas at Cymer Inc. Acton LaserOptik Austin Gigaphoton, Inc. Nikon Alpine University of Wisconsi Komatsu SVGL CANON Inc. Calcium Fluoride Lambda Physik Zeiss Fraunhofer Korth Bicron Lenses Corning Schott Government Labs CANON Inc. SVGL Barium Fluoride Fraunhofer Gesellscheft Nikon Zeiss Bicron Korth NIST SANDIA Corning Tropel



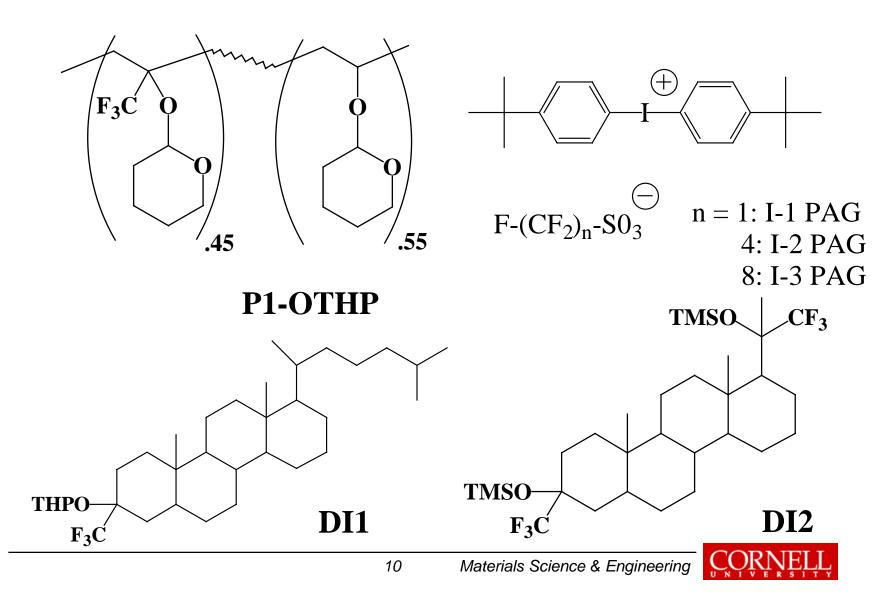

Some Candidate Platforms

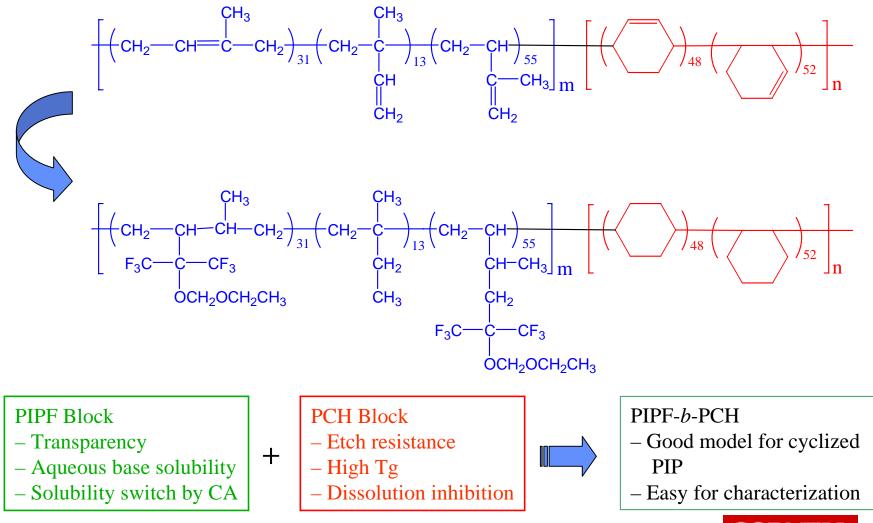
Materials Science & Engineering

University of Texas



Cornell University


Exposure Results Using a 248 nm Stepper

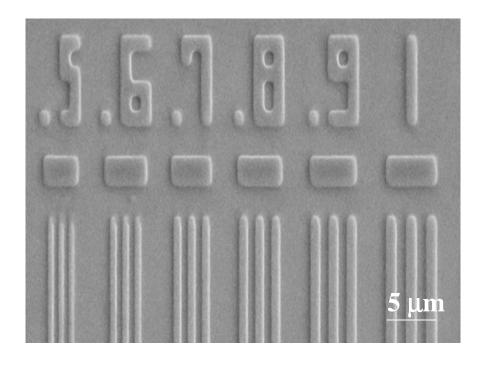

Suitable as a tool-test resist with FT ~130 nm (OD = 0.4)

Dissolution Inhibitors

Design of Block Copolymer Resists as Model Cyclized PIP Resists

Etch Studies of Cyclized PIP-F₆OH

Polymer	Etch Rate (vs. Novolac Resin)		
	CHF ₃ /O ₂ [†]	CF ₄ [‡]	
Linear PIP-F ₆ OH	1.88 ×	1.53×	
Cyclized PIP-F ₆ OH	1.19 ×	1.06×	


[†]Thermo oxide etching: 40 mtorr/200 W/ CHF₃ (50 sccm) + O_2 (2 sccm) [‡]Nitride etching: 40 mtorr/150 W/CF₄ (30 sccm) (Measured on *Plasma Therm 72 RIE System* at CNF)

Terms dentified a polymer backbone with tunable properties **Cyclized PIP-F₆OH:** *T*_g and Etch resistance

12

Lithographic Results Using a 248 nm Stepper

Film thickness: 325 nm

- 12 wt % Polymer in PGMEA
- 2% Triphenylsulfonium nonaflate
- PAB 90 °C/ 60 sec
- 30 mJ/cm²
- PEB 115 °C/ 60 sec

Materials Science & Engineering

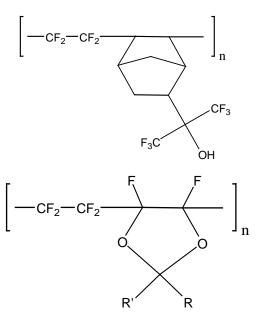

– 0.26N TMAH + 17% IPA/150 sec

Image obtained before the optimization of processing conditions Image obtained before the optimization of processing conditions Image obtained before the optimization of processing conditions

Outlook For Other 157nm Resists

- Tetrafluoroethylene chemistry
 - DuPont, Universities
- Siloxane chemistry
 - Japan, Shipley
- Nitrile chemistry
 - Universities

Future ESH Issues for Lithography

- Radiation
 - 50-100 KeV from Electron Projection Lithography (EPL)
 - 11-14nm X-rays from Extreme Ultraviolet Lithography (EUVL)
 - 157nm vacuum ultraviolet light for 157nm Lithography
- Materials
 - Passive materials of construction
 - Active materials of construction, e.g. lenses, mirrors, masks, etc.
 - Disposable materials, e.g. resists, pellicles, etc.
- Processes ("cradle to grave")
 - at the fabricators
 - at the semiconductor manufacturers
 - in disposal

Courtesy, Gene Feit (Sematech)

Resists and Pellicles for Post-193nm

157nm Resist

- likely to be very unfamiliar materials
- less likely to be thinner versions of familiar DUV resists

• EUVL Resist

• likely to be thinner versions of familiar materials

• EPL Resist

 likely to be refinement of existing e-beam resists

Courtesy, Gene Feit (Sematech)

• Pellicle

- likely to be a very unfamiliar material
- less likely to be a thin glass plate

• Pellicle

• not invented yet

- Pellicle
 - not invented yet

Acknowledgments

Intel Corporation

Dr. Susan Holl Dr. Raghu Balasubramanian Ms. Janet Chambers

International SEMATECH

Mr. Will Conley

Cornell University

Dr. Young Bae Dr. Dirk Schmaljohann Dr. Hilmar Koerner Sandi Hamad

Cornell Nanofabrication Facility Garry Bordonaro

