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❏  Background and Motivation

❏  Statistical experiments for characterizing the etch process as 
    a whole (done at TRW NovaSensor Co.):

- Effects of different input parameters on etching 
  characteristics: Silicon etch rate, Photoresist etch rate, Lag, ….

❏  Polymer deposition experiments (done at Stanford University):

- Effects of ions on the deposition process

❏  Summary
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Motivation: STS Deep Trench Etcher

•  Inductively Coupled High Density Plasma (ICP)

•  The etching process switches back and forth between etch (using SF6) and 
    deposition (using C4F8) cycles

•  The deposition phase protects the sidewalls and makes the etching process 
    anisotropic
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❏  Background and Motivation

➨  Statistical experiments for characterizing the etch process as 
    a whole (done at TRW NovaSensor Co.):

- Effects of different input parameters on etching 
    characteristics: Silicon etch rate, Photoresist etch rate, lag, ….

❏  Polymer deposition experiments (done at Stanford University):

- Effects of ions on the deposition process

❏  Summary

OUTLINE



Stanford University

55

Design of Etch Experiments (1)

•  Two masks were designed: one with 7% area usage and the other with 
    21% area usage

•  High density mask was used so that non-uniformity effects could be seen

•  Masks consist of trenches with widths between 3µm and 200µm and 
    square vias with sizes between 20µm and 200µm 

•  Resist thickness: 8µm 

•  Goal: Characterization of the STS etcher with respect to the input 
    parameters using statistical methods
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•  The following parameters were chosen:

Code Parameter Equip. 
Range

A SF6 Flow Rate (sccm) 0 , 260
B Etch Time (s) 5 , 30
C C4F8 Flow Rate (sccm) 0, 170
D Deposition Time (s) 5 5 , 30
E APC (Degrees) 0.1 , 90
F Top Power (W) 0 , 1000
G Bottom Power (etch) (W) 0 , 30
H Bottom Power (Dep.) (W) 0 , 30

•  Too many input parameters: SF6 flow rate, C4F8 flow rate, Etch time, 
    Deposition time, APC, Coil Power and Electrode Power in etching and 
    depositions cycles

Design of Etch Experiments (2)
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Design of Etch Experiments (3)

•  Full Factorial design requires 28 = 256 experiments!

•   Partial Factorial design was done assuming all third and higher order 
     interactions and also some of the second order interactions to be negligible

•   Number of experiments : Initial = 2(8-3) + 4 center points = 36
CCD  = 2*8  + 3 center points = 19

•   Responses: Etch rate, Lag (ARDE), Non-uniformity, Sidewall Angle and 
     Photoresist Etch rate (Selectivity)

•   Etch time = 90 min.
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Range of Responses

0 1 2 3 4 -500 0 500 1000

0 50 100 150 -10 0 10 20 30 40

Lag(ER)  (%) Non-uniformity (200 µm) (%)

Etch Rate (200 µm, C) (µm/min) Photoresist Etch Rate (A/min)
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•  Increasing pressure decreases the etch rate

•  Etch rate is measured for 200 µm trenches at the center of the wafer
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Silicon Etch Rate (2)

•  Effect of Coil power depends on the cycle times
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Silicon Etch Rate (3)
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•  R2
adj=94% ,  R2

pred=88%

•  Bias power during deposition cycle has no significant effect
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Photoresist Etch Rate (1)

•  Etch rate is averaged over 5 points on the wafer

•  Increasing pressure and residence time during the etch cycle tend to 
    decrease photoresist etch rate significantly
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Photoresist Etch Rate (2)
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•  Effect of Coil power depends on the cycle times
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Photoresist Etch Rate (3)

•  Increasing Bias power during deposition cycle increases photoresist 
    etch rate
•  R2

adj = 96% , R2
pred = 84%
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Lag or ARDE (1)
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•  Lag is measured as percentage difference between the etch depths of
    the 200 µm and 20 µm trenches

•  R2
adj=97% , R2

pred=80%

•  “Deposition Lag” during the deposition cycle will translate as reverse 
    etch lag 
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Lag or ARDE (2)

•  The “Deposition Lag” can be used for decreasing the overall lag amount

•  There is a trade-off between lag amount and etch rate

•  For the above profile: Lag = -7% , Etch rate = 1.1 µm/min , Selectivity to 
    resist = 130
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Undercut

•  Undercut is caused by: 
1- Increasing the pressure during the etch cycle
2- Increasing the etch cycle time to deposition cycle time ratio
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Micrograss

•  A combination of high APC (low pump speed, high residence time) and high 
    deposition to etch ratio causes micrograss formation

•  If APC is high, higher Bias power (etch or deposition) increases micrograss 
    formation
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Non-Uniformity
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•  APC is the most important factor in increasing etch rate non-uniformity 
    across the wafer

•  Non-uniformity is measured as the percentage difference between 
    the etch rate of the 200 µm trenches at the edge and center of the wafer

Lower pump 
speed
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Sidewall Angle and Trench Width
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•  More negative sidewall angles with the increase in the trench width

•  Any factor which increases the etch rate, tends to make the profile more
    re-entrant
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Summary

•  Etch lag can be controlled by adjusting the ratio of the etch cycle time 
    to the deposition cycle time, at the expense of the etch rate

•  Etch profiles become more re-entrant as the etch rate increases, this is
    true even for trenches with different widths etched with the same etch 
    recipe 

•  The Bosch deep trench etch process was characterized with respect to
    the input parameters, using statistical techniques
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❏  Background and Motivation

❏  Statistical experiments for characterizing the etch process as 
    a whole (done at TRW NovaSensor Co.):

- Effects of different input parameters on etching 
    characteristics: Silicon etch rate, Photoresist etch rate, lag, ….

➨  Polymer deposition experiments (done at Stanford University):

- Effects of ions on the deposition process

❏  Summary

OUTLINE
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Overhang Test Structure

Si

SiO2

Polysilicon

Photoresist

• Separates the effects of the ion flux and neutral fluxes
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Polymer Deposition (Wide Opening Overhang)

5 µm

•  C4F8 flow rate = 85 sccm, P = 15 mTorr, Coil Power = 600W for 15 min.

Bias Power = 0 W Bias Power = 8W

•  Less spread for deposition with higher Bias power

•  Deposition thickness is almost the same (10% more for high bias power)

Ions Ions

Polysilicon
Photoresist

Polymer

•  No definitive conclusion
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Bias Power = 0 W Bias Power = 8W

Polymer Deposition (Narrow Opening Overhang)

α=6 o α=3.5 o

Ions Ions

Polysilicon

Photoresist

Polymer
2 µm

• Conclusion: Polymer deposition should be ion-driven

• D’Agostino et al. (1983, 1997) proposed a model in which Sd∝ Fi and so 
   deposition rate ∝  FiFd ⇒  Can not model our experimental profiles
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← Sticking Probability : Sf

d

d

d

Active Site Ratio : θf

Inactive Site Ratio :  1 - θf

d
d

Site Balance Equation

+ ← Active Site Creation : αFi
            (D’Agostino et al.)
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Modeling Ion Enhanced Polymer Deposition (cont’d)

• Solving the site balance equation:

fdi

i
f SFF

F

+
=

α
αθ

ffd SS θ=Effective Sticking Probability = 

Density

SF ffd θ
Deposition Rate = 

• For our case FdSf >>Fi:

Density

Fiα
Deposition Rate ≈ 
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Initial Simulation Results

Low Bias Power High Bias Power

2 µm
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Possible Reasons for Discrepancy

• The simulation could not capture the spread of the profile for low bias case. 
   This could be because of the following reasons:

» There is a partial CVD component which was not considered in the model

» Charging effects can change the trajectory of ions and spread them out

» Possible ion enhanced surface mobility

+ + + + + + + + + +

+ + +

------
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Trench Before Deposition

15 µm

Si
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Polymer Deposition in Previously Etched Trenches

•  The starting point of significant deposition on the sidewalls depends on 
    the trench width

15 µm

C4F8 Flow = 85 sccm
P = 15 mTorr
Coil Power = 600W
Bias Power = 8W
Time = 15 min.
(No switching,
Deposition only)

Ions

Si
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Ions

Ion Reflection and Sidewall Shape

θ

θ1

2

1

•  If θ=90−α then θ1=90−3α 

•  Much more ion flux , direct or reflected, on slope 1 than slope 2
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Ion Reflection and Polymer Deposition
IonsPolyimide

 Tape

15 µm

7.5 µm
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Summary

•  Polymer deposition is an ion-driven process

•  Ion reflection plays an important role in the polymer deposition on the 
    sidewalls of trenches

•  A monolayer model for polymer deposition process was developed
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