Bio-treatment of Waste Streams Containing Organic Compounds and Copper (Subtask C-1-2)

Arturo Ruiz-Yeomans, Kimberly Ogden

Chemical and Environmental Engineering, University of Arizona

Objectives:

- Investigate feasibility of biotreatment process for organic-containing wastewater
- Develop low energy, high efficiency process for treatment, reclaim and potential recycle of organic-containing wastewater.

ESH Impact:

- Without treatment and reclaim or recycle of waste waters, large quantities of effluent are discharged.
- CMP and electroplating bath processes are known to utilize as much as 30% of a fab's UPW and contribute significantly to Copper contamination
- Effluent may be contaminated with hard-to-remove compounds.
- Environmental impact may affect industry

Alternative Methods

Advantages of Biotreatment

- Carbon adsorption
- UV- oxidation methods
- Catalytic Membrane

- Simplicity of Setup
- Technology is better known
- Possible Synergistic Cu - Organic Effects
- Potentially achieve lower concentration levels
- Cost and Energy efficient
- Tolerant to Changing Waste Conditions

Theory and Method of Approach:

Immobilized System

Immobilized System Start up

Effects of IPA Spikes:

Effects of IPA and pH Spikes:

Summary of Results for Column Experiments

Spike	Duration (residence times)	Effect
IPA (ppm):		
1000	0.50	40 % IPA, 8 hr Recovery
500	0.25	12 % IPA, 5hr Recovery
400	0.25	5 % IPA, Recovery during spike
350	0.25	4% IPA, Recovery during spike
300	0.25	No effect
pH:		
5	0.25	No effect
4	0.25	8 % IPA, Recovery during spike

Model Formulation

Diffusion and biodegradation of Organics inside the biofilm

Model Formulation (cont'd)

Solving the PDE gives us the Flow, N_T, of IPA into the biofilm:

$$N_{T} = k_{2}C_{B}Tanh(k_{1}L)$$
$$k_{2} = \alpha D_{eff}k_{1}$$

Determination of Model Parameters: Bacterial Growth (k)

Model Formulation – (Cont'd)

IPA balance over Reactor

$$\frac{\mathrm{d}\mathrm{C}_{\mathrm{IPA}}^{\mathrm{B}}}{\mathrm{d}t} = \frac{1}{\tau_{1}} \left(1 - \mathrm{C}_{\mathrm{IPA}}^{\mathrm{B}} \right) - \tau_{2} \mathrm{C}_{\mathrm{IPA}}^{\mathrm{B}} \mathrm{Tanh}(\mathrm{k}_{1}\mathrm{L})$$

Rate of ChangeDof Bulk IPAIr

Dilution of IPA In the reactor Flow of IPA into particles

Model Formulation – (Cont'd)

Biofilm Balance

$$\frac{dL}{dt} = k_3 C_B Tanh(k_1 L)$$
$$L = 0.001 \rightarrow t = 0$$

Rate of change of biofilm thickness is proportional to the flow of IPA into the biofilm

Where:

Experimental Parameters

μ_{max}	0.022	h^{-1}
K _m	0.16	mg IPA/cm ³
D _{eff}	0.001	cm²/h
Υ	0.12	mg cells/mg IPA
α	40	cm ⁻¹
r _p	0.075	cm
F	100	cm ³ /h
V	8000	cm ³
ν	35	cm ³
ρ	1000	mg Cells/cm ³
C ₀	0.01	mg IPA/cm ³

Comparison of Model to Experimental Data

Effect of μ_{max}

Effect of Yield

Publications for Cu removal

- Ogden, Muscat and Stanley "Biosorption of Copper from Chemical Mechanical Planarization Wastewaters" MICRO, July/August 2001
- Stanley and Ogden "Removal of Cu from CMP waste water: Is it feasible?" Environmental
 Science & Technology (Submitted 5/01; preprints available from Kim)

Work in Progress

- Continue working on model

- Suspended cells growth
- Carbon adsorption
- Test with transient IPA and pH spikes
- Incorporate to Biotreatment of Cu
 - Simultaneous Cu and Organic
 - biotreatment
 - Adjust and test models