Particle Adhesion and Removal in Semiconductor Processing

Gretchen Burdick, Kevin Cooper¹, Neil Berman, Stephen Beaudoin Department of Chemical and Materials Engineering Arizona State University, Tempe, AZ ¹Advanced Product Research Laboratory, Semiconductor Products Sector Motorola, Austin, TX

Chemical Mechanical Polishing (CMP)

- Removes a thin surface layer to obtain planarity of wafers
 - Uses abrasive particles in aqueous solution in conjunction with relative motion between polishing pad and wafer
 - Surface removed mechanically and chemically
- » Introduces contaminants onto wafer surfaces
 - Pieces of polished surface and polishing pad
 - Slurry particles
 - Contamination from the handler or handling device
 - Must be removed before further processing

Post-CMP Cleaning

- » Must remove particles less than 1 micron in diameter
- » Must not roughen wafer surface excessively
- » Brush scrubbing and megasonic cleaning have potential for removing small particles
- » Problems with
 - Resource consumption
 - Lack of understanding of cleaning mechanism
 - Inefficient and unreliable processes

Brush Scrubber

Brush Scrubbing Results[†]

Before Cleaning

After Cleaning

[†]*Zhang, Burdick, and Beaudoin. Thin Solid Films 332, 379 (1998)*

Post-CMP Cleaning Model Objective

Adhesion Mechanisms

Bond Type	Interatomic Distance	Dissociation Energy	Effect of Temperature
	(Angstroms)	(Kcal/mole)	Temperature
Primary Covalent	1 to 2	50 to 200	
Н-Н	0.8	104	None
С-Н	1.1	99	Trone
C-C	1.5	83	
Ionic	2 to 3	10 to 20	High
Hydrogen Bond	2 to 3	3 to 7	High
van der Waals Forces			
Dipole Interactions	2 to 3	1.5 to 3	High
London Forces	3 to 5	0.5 to 2	Low

Always present

AFM Force Measurement

AFM Force Curve

Particle – Surface Contact Radius

PSL spheres on Silicon

Surface Mechanical Properties

Particle and Surface Morphology

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 nm

4 Parameters Determined

Average asperity size (ε_s)

Standard deviation in asperity size (std)

Fractional coverage of the surface by asperities (f)

Common shape, if any, among asperities

Asperities assumed to be hemispherical in this work

2nd Generation Model (Gen 2)

3-D Surface Reconstruction – Simulated Surface

Surface Interaction Force

Roughness Effect – Monodisperse Particles

Effect of Particle Diameter

Validation of Substrate Roughness

Removal Force (nN)

Alumina/H₂O/Silicon Adhesion

Alumina Adhesion – Effect of Substrate and Medium

Geometry Effects

Current vdW models for a spherical 0.15 μ m alumina particle (slurry particle) in contact with a silicon surface predict a removal force of **15 nN**

Our simulation accounting for the larger than expected contact area predicts a removal force of **108 nN**

Effect of Applied Load

5 PSI Applied Load

Maximum contact area (0.15 μ m alumina slurry = 282 nm)

	Force Prediction	Force Prediction	Force Prediction
	(nN)	(nN)	(nN)
System			
	Applied Load = 0 PSI Smooth Films	Applied Load = 0 PSI Rough Films	Applied Load = 5 PSI Rough Films
Al ₂ O ₃ /Air/SiO ₂	289	108	4058
Al ₂ O ₃ /Air/Cu	653	46.3	5876
Al ₂ O ₃ /Air/W	676	56.1	5335
Al ₂ O ₃ /H ₂ O/SiO ₂	39.2	3.3	544
Al ₂ O ₃ / H ₂ O/Cu	186	11.5	1674
Al ₂ O ₃ / H ₂ O/W	200	16.6	1555

Post-CMP Cleaning – Surface Characterization

All axes are in nm

Material	$\mathbf{\epsilon}_{s}$ (nm)	Std (nm)	Frac. Coverage	E (Gpa)
SiO ₂	1.7	0.7	56	55.8
Cu	0.8	0.5	45	78
W	1.1	.5	41	418
Al ₂ O ₃ particle	1.6	0.7	33	500

CMP and Post-CMP Cleaning – Alumina Particles Interacting with Copper Films

Al₂O₃ particle may also dissolve in acidic solution

CMP and Post-CMP Cleaning – Alumina Particles Interacting with SiO₂ Films

Chemistry	Mean	Std Dev	Std Err Mean
H ₂ O	1.00	0.23	0.05
H ₂ O ₂	2.72	0.68	0.13
NH₄OH	2.57	1.25	0.26

	SiO ₂		Al ₂ O ₃	
	Surface Species	Solubility	Surface Species	Solubility
H₂O	Si-O-Si, =Si(OH), Si(OH)x	Si(OH) ₄ : 10 % dissociation	Al ₂ O ₃	does not dissolve
H_20_2	Si-O-Si, =Si(OH), Si(OH)x	Si(OH) ₄ :0% dissociation	AI_2O_3 , AI^{+3}	dissolves
NH₄OH	Si-O-Si, =Si(OH), Si(OH)x	Si(OH) ₄ : 100 % dissociation	AI_2O_3 , AI^{+3}	dissolves

CMP and Post-CMP Cleaning – Alumina Particles Interacting with Tungsten Films

Adhesion Model Conclusions

- » Expanded existing particle adhesion models to include
 - Chemical and morphological heterogeneities
 - Compression and deformation of surface asperities
 - Non-ideal geometries
- » Obtained statistical information on particle adhesion
- » Developed experimental procedure to measure particle adhesion for different particle/substrate systems as a function of
 - Aqueous environment
 - Contact time
 - Applied load
 - Solution temperature

Removal Model Objective

Assess mechanism(s) of micron-scale particle removal from semiconductor wafer surfaces using a critical particle Reynolds number approach

- Relate adhesion models to particle removal
- Relate flow characteristics to particle removal
- Develop model for removal processes by combining adhesion and flow models
 - > Determine effect of Hamaker constant (A) on model
 - > Determine effect of particle size distribution on model
 - > Determine effect of roughness on model

Preliminary Work

Use experimental results from Yiantsios and Karabelas *J. of Colloid and Interface Sci.* 176, 74-85 (1995) to assess validity of critical particle Reynolds number approach

- Studied detachment of spherical glass particles from a flat glass surface
- Used laminar channel flow over a range of flow rates to remove adhering particles
- Percentage adhering as a function of wall shear stress (τ_w) presented graphically
- System Properties
 - > Fluid: solution of distilled water, HNO₃, and NaNO₃
 - Ionic strength: 1 x 10⁻³ mol/L
 - pH: 3
 - > Particle (mean) diameters: 2, 5, 10, 15 μ m ($\sigma \sim 12\%$)
 - > Estimated maximum roughness of surface: 0.8 nm
 - > Hamaker constant (A): 1.14 x 10⁻²⁰ J

Flow System[†]

[†] J. Colloid Interface Sci. 176, 74-85 (1995)

Velocity Profile, $Q = 0.02 \text{ cm}^3/\text{s}$

Particle Adhesion/Removal Model

Rolling Particle Removal Criteria

External moment of surface stresses about center of particle

 $M_{\rm D} \propto d Re_{\rm n}$

Assessing Particle Removal

- » Removal occurs when $\text{Re}_p(\text{Flow}) \ge \text{Re}_{pc}(\text{Rolling})$ Re_p(Flow) constant at constant flow rate (for this system)
- » *Ideal system* of smooth, deformable spherical particles of identical radius adhering to a smooth, flat, deformable surface
 - \rightarrow Single adhesion force

 \Rightarrow Single value of Re_{pc}

 \Rightarrow All or none of the adhering particles should be removed

- » *Real system* of deformable particles with non-uniformly distributed roughness and a finite size distribution adhering to a deformable surface with a non-uniform roughness distribution
 - → Multiple adhesion forces and multiple points around which rolling can occur

 \Rightarrow Multiple values of Re_{pc}

 \Rightarrow All, some, or none of the adhering particles can be removed

Illustration: Critical Particle Reynolds Number Approach

Adhesion Profile, d = 2 and 15 μm

Effect of Hamaker Constant on Re_{pc} , $d = 2 \,\mu\text{m}$

Ideal System

Effect of Particle Size Distribution on Re_{pc}

Effect of Roughness on Adhesion Force

System	Mean F _A	Standard	
$d = 2 \ \mu m$ $A = 1.14 \ x \ 10^{-20} J$	(N)	Deviation	
Ideal			
Smooth particle/Smooth surface	1.3 x 10 ⁻⁸	-	
Real			
Rough particle/Rough surface	2.2 x 10 ⁻⁹	3.1 x 10 ⁻¹¹	

Assumptions for Roughness				
	Average Height (nm)	Standard Deviation (nm)	Fractional Coverage	
Particle	0.4	0.4	0.25	
Surface	0.4	0.4	0.25	

Effect of Roughness on Re_{pc}

Roughness affects Re_{pc} by affecting

- Adhesion force
- Point around which rolling can occur

Point around which rolling occurs

Length of horizontal and vertical lever arms $(l_1 \text{ and } l_2)$ depend on ε_1

Effect of Roughness on Re_{pc} , $d = 2 \,\mu\text{m}$

Removal Analysis Procedure

Calculating the Adhesion Force using Gen 2, $d = 2 \mu m$

Parameter	Value
Hamaker constant (A) ¹	1.14 x 10 ⁻²⁰ J
Lennard-Jones separation distance (D _{LJ}) ²	0.4 nm
Bulk modulus (E) ¹	4.86 x 10 ¹⁰ N/m ²
Applied load (P) = weight of particle ²	1.03 x 10 ⁻¹³ N
Fraction of surface covered with asperities $(f_s)^3$	0.25
Average roughness height on surface $(\varepsilon_s)^3$	0.4 nm
Standard deviation in surface roughness height $(\sigma_s)^3$	0.4 nm
Fraction of particle covered with asperities $(f_p)^3$	0.25
Average roughness height on surface $(\varepsilon_p)^3$	0.4 nm
Standard deviation in surface roughness height $(\sigma_p)^3$	0.4 nm
Contact radius (a), calculated using the DMT theory	6.46 nm

¹Taken from Yiantsios and Karabelas

²Set by Gen 2

³Estimated values based on information given by Yiantsios and Karabelas

Calculating the Adhesion Force using Gen 2

Calculating the Adhesion Force using Gen 2

$$F_{A_{real}}(A, D, E, P, f_s, \varepsilon_{s,} \sigma_s, f_p, \varepsilon_{p,} \sigma_p, a) \qquad \frac{F_{A_{real}}}{F_{A_{ideal}}} = K$$

$$F_{A_{real}}(A, \varepsilon_s, \varepsilon_p) = K(\varepsilon_s, \varepsilon_p) \cdot F_{A_{ideal}}(A)$$

A, ε_s , ε_p have the most influence on the adhesion force for this system

Adhesion Profile, $d_{mean} = 2 \ \mu m$

Adhesion Profile, $d_{mean} = 5 \ \mu m$

Adhesion Profile, $d_{mean} = 10 \ \mu m$

Adhesion Profile, $d_{mean} = 15 \ \mu m$

Removal Model Conclusions

- » Accurate particle removal models require accurate particle adhesion models
 - Removal is highly dependent on adhesion model through
 - Particle size distribution
 - > Roughness
 - Hamaker constant
- » Rolling is the controlling removal mechanism
- » Roughness and particle size distribution affect the point around which rolling can occur
- (Rolling) theoretical adhesion profiles for real adhesion system in agreement with those of Yiantsios and Karabelas
- » Critical particle Reynolds number approach validated
- Predictive model for particle removal established
 Independent of particle size and cleaning (flow) system

Ongoing Work

Use channel flow system to experimentally validate removal model (critical Reynolds number approach)

- Vary particle diameter, particle composition, fluid flow rate, and fluid viscosity
- Experimentally measure adhesion force and Hamaker constant
- Experimentally determine particle and surface roughness
- Determine effect of roughness on particle adhesion (through validated models)

Future Work

- » Use critical particle Reynolds number approach for
 - Asymmetrical particle analysis
 - Embedded particle analysis
 - Effect of particle agglomeration on removal
 - Tool based studies
 - > Brush scrubbing
 - > Megasonic cleaning
- » Determine effect of turbulent flow on particle removal
- » Use results in fab to optimize post-CMP cleaning

- » Speedfam-IPEC Corporation
- » National Science Foundation (CAREER Award and Graduate Research Traineeship Program)
- » National Science Foundation/Semiconductor Research Corporation Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- » Molecular Imaging Corporation (equipment support)

