Micromachined Piezoelectrically Actuated Flextensional Transducers For High Resolution Fluid Ejection Or

Zero Waste Dispensing of Chemicals in Lithography and Backend Processing

B. (Pierre) T. Khuri-Yakub and Gokhan Perçin

Department of Electrical Engineering Edward L. Ginzton Laboratory Stanford University

This research was supported by the Defense Advanced Research Projects Agency of the Department of Defense and was monitored by the Air Force Office of Scientific Research under Grant No. F49620-95-1-0525.
 This work made use of the National Nanofabrication Users Network facilities funded by the National Science Foundation under award number ECS-9731294.

Outline

- Motivation
- Microsystems technology (MST) and inkjet printing markets
- Large scale prototype device
 - FEA of prototype device
 - Samples of ejection by using prototype device
 - Photoresist deposition
- Ejection simulation
- Micromachined device
 - Device configuration
 - Fabrication of micromachined device
- Theory and equivalent circuit
 - Input impedance, displacement, and mode shapes simulations
 - Electrical and optical measurements
- Samples of ejection by using micromachined device
- Conclusions and future work

Motivation

Fluid ejection

- Photoresist deposition without spinning
- Controlled deposition of fluids and small solid particles
- Inkjet printing
- Flextensional transducer
 - ✤ Air or immersion transducer
 - ✤ Piezoelectric actuation
 - Relatively small input and mechanical impedance mismatch
 - High sensitivity
- Micromachined into 2-D arrays
 - Individual addressing
 - High frequency response
 - Electronic integration with driving, receiving, and addressing circuitry
 - Fine tuning with DC bias

Existing MST Products

	199	6	2002		
Products	Units	US\$	Units	US\$	
	(millions)	(millions)	(millions)	(millions)	
Hard disk drive heads	530	4500	1500	12000	
Inkjet printer heads	100	4400	500	10000	
Heart pace makers	0.2	1000	0.8	3700	
In-vitro diagnostics	700	450	4000	2800	
Hearing aids	4	1150	7	2000	
Pressure sensors	115	600	309	1300	
Chemical sensors	100	300	400	800	
Infrared imagers	0.01	220	0.4	800	
Accelerometers	24	240	90	430	
Gyroscopes	6	150	30	360	
Magnetoresistive sensors	15	20	60	60	
Microspectrometers	0.006	3	0.15	40	
Totals		13033		34290	

Taken from MST News, November 1998, and Micromachine Devices, October 1998.

Emerging MST Products

	199	6	2002		
Products	Units	US\$	Units	US\$	
	(millions)	(millions)	(millions)	(millions)	
Drug delivery systems	1	10	100	1000	
Optical switches	1	50	40	1000	
Lab on chip (DNA, HPLC)	0	0	100	1000	
Magneto optical heads	0.01	1	100	500	
Projection valves	0.1	10	1	300	
Coil on chip	20	10	600	100	
Micro relays	-	0.1	50	100	
Micromotors	0.1	5	2	80	
Inclinometers	1	10	20	70	
Injection nozzles	10	10	30	30	
Anti-collision sensors	0.01	0.5	2	20	
Electronic noses	0.001	0.1	0.05	5	
Totals		106.7		4205	

Taken from MST News, November 1998, and Micromachine Devices, October 1998.

Annual Cost of Dispensed Photoresist Per Track

Photoresist	cost/gl	cost/cc	1cc/wafer	2cc/wafer	3cc/wafer	4cc/wafer
SPR 510	\$560	\$0.148	\$69,021	\$138,042	\$207,064	\$276,085
Apex E	\$1,500	\$0.396	\$184,878	\$369,757	\$554,635	\$739,513
DUV	\$2,000	\$0.528	\$246,504	\$493,009	\$739,513	\$986,017
DUV	\$3,000	\$0.793	\$369,757	\$739,513	\$1,109,270	\$1,479,026
DUV	\$4,000	\$1.057	\$493,009	\$986,017	\$1,479,026	\$1,972,035
DUV	\$5,000	\$1.321	\$616,261	\$1,232,522	\$1,848,783	\$2,465,043

Calculated for a wafer throughput per year for one track of (60 wafers/hr) (360 days/year)(0.90 track utilization)=466,560 wafers/year.

Photoresist	Viscosity	Volume	Thickness	Final	Waste
	(cSt)	dispensed (cc)	(^µ m)	volume (cc)	(%)
ТОК	7.0	1.3	0.80	0.0251	98.1
AZ7511	10.1	2.1	1.08	0.0339	98.4
SPR505	8.2	1.4	0.60	0.0188	98.7
SPR507	12.3	1.9	0.84	0.0264	98.6
SPR508	13.9	2.1	1.00	0.0314	98.5
SPR510	18.6	2.1	1.20	0.0377	98.2
JSR061	18.0	2.1	1.06	0.0333	98.4
JSR300	55.0	2.4	3.20	0.1005	95.8

Taken from "How to minimize resist usage during spin coating," B. Lorefice *et al.*, SVG Photo Process Division, Semiconductor Intl., June 1998.

Printer Market in 1997

Dollar amounts in millions. Taken from InfoWorld, January 4, 1999. Data by IT Strategies.

Common Inkjet Printheads

Bubble jet, roof shooter

Piezoelectric head, roof shooter

Bubble jet, side shooter

Piezoelectric head, side shooter

Outline

Motivation

• MST and inkjet printing markets

- Large scale prototype device
- Ejection simulation
- Micromachined device
- Theory and equivalent circuit
- Samples of ejection by using MEMS device
- Conclusions and future work

Large Scale Prototype

- Dimensions of demonstration device:
 - Diameter = 9 mm
 - Membrane thickness = $25 \ \mu m$
 - Piezoelectric thickness = $15-25 \,\mu m$
 - Piezoelectric inner diameter = 2 mm
 - Piezoelectric outer diameter = 6-7 mm
 - Orifice size = $50-200 \,\mu m$
 - Operating frequencies: 9.5 kHz, 16.4 kHz, 19.0 kHz
 - Membrane material: brass, steel, silicon
 - Piezoelectric material: Murata SWM, Motorola PZT 3203HD, and lithium niobate
- Drop-on-demand and continuous modes of operation

Resonance Frequencies

- Resonance frequency is proportional to the thickness, and inversely proportional to the square of the radius.
- Average values for physical dimensions and material constants of the compound plate give a good approximation to the measured resonance frequencies.
- λ_0^2 values are well-tabulated. They correspond to the eigenvalues of the system under specific boundary conditions.

$$f = \frac{\lambda_0^2 h_{av}}{2\pi a^2} \sqrt{\frac{E_{av}}{12\rho_{av} \left(1 - v_{av}^2\right)}}$$

- *a* : the radius of the plate
- h_{av} : the plate thickness
- E_{av} : Young's modulus
- v_{av} : Poisson's ratio
- ρ_{av} : density

Large Scale Prototype

- Flexural mode of operation of composite membrane
- Large dynamic range, ie. 190 µm peak-to-peak measured displacement in air
- An ac voltage is applied to the membrane to set it into vibration
- Goal: maximum displacement at the center.
- Optimum dimensions for piezoelectric material and carrier plate material were obtained.

Samples of Ejection Using Prototype

Photoresist ejection at 7.15 kHz

Water ejection at 19.0 kHz

Photoresist Coverage of A Wafer

- Shipley Microposit[®] 1805, 1813, 1400-21, and 1400-27 photoresists which have dynamic viscosities of 5, 20, 8, and 18 cSt, respectively.
- 3.5 µm thickness, 0.15 µm variation in thickness
- Nonuniformity due to dust and dry lab environment
- Better results expected in solvent saturated chamber
- Direct write applications for MEMS
- Quick spinning after ejection may increase uniformity

Deposited and Patterned Photoresist

- Shipley Microposit[®] 1813 photoresist (20 cSt)
- 10 μm wide lines and spacings.
- Photoresist coverage of deep silicon trenches
- 2.5 μm thick photoresist

Patterned resist at 150 µm deep Si trench

Solid Particle Ejection at 2.9 kHz

Solid Particle Ejection at 5.5 kHz

Outline

- Motivation
- MST and inkjet printing markets
- Large scale prototype device
- Ejection simulation
- Micromachined device
- Theory and equivalent circuit
- Samples of ejection by using MEMS device
- Conclusions and future work

Ejection Simulation

- 9 mm-diameter prototype device , 60 μ m orifice size, water ejection, S = 20
- 16.4 kHz 3 µm amplitude half cycle sinusoidal displacement, 2nd mode
- Velocity of the drop: 1.64 m/s simulated, 1.54 m/s measured
- 42.0 μ sec pinch-off time, 1 μ l/s flow rate, 62 pl volume of the drop

Ejection Simulation

- 4 μm orifice size
- 110 µm-diameter micromachined device
- 1.4 MHz 0.2 µm amplitude sinusoidal displacement, 1st mode
- Half cycle excitation
- 0.62 µsec pinch-off time
- Water ejection, S = 9.3
- Simulated velocity of the drop is 5.3 m/s.
- The diameter of the drop is 82% of the orifice diameter.
- 29 nl/s flow rate, 18.5 fl volume of the drop

Software was developed by Prof. T. S. Lundgren, University of Minnesota, and N. M. Mansour, NASA Ames

Outline

- Motivation
- MST and inkjet printing markets
- Large scale prototype device
- Ejection simulation
- Micromachined device
- Theory and equivalent circuit
- Samples of ejection by using MEMS device
- Conclusions and future work

Micromachined Device

- 2-D array with individually addressed columns
- 4 8 μm orifice size
- $0.3 0.5 \,\mu\text{m}$ thick zinc oxide actuator
- $0.25 0.4 \,\mu\text{m}$ thick silicon nitride membrane
- Deep reactive ion etched 90 110 µm diameter reservoir

Fabrication of Devices

Growing 0.25 microns LPCVD silicon nitride

Patterning 8 microns ejection holes in the nitride by dry etch Etching 100 microns fluid reservoir holes from the back side of the wafer by DRIE

E-beam evaporation of 0.1 microns hot Ti/Au bottom electrode Patterning Ti/Au bottom electrode by wet etch

Fabrication of Devices

DC planar reactive magnetron sputtering of 0.4 microns ZnO Patterning the ZnO layer with wet etch

Patterning e-beam evaporated 0.1 microns Cr/Au top electrode layer by liftoff

Fabrication of Devices

- 60x60 or 22x22 array of ejectors per 1 cm²
- Individually addressed columns

Outline

Motivation

- MST and inkjet printing markets
- Large scale prototype device
- Ejection simulation
- Micromachined device
- Theory and equivalent circuit
- Samples of ejection by using MEMS device
- Conclusion and future work

Finite Element Analysis

- Classical thin (Kirchoff) plate theory, Mindlin plate theory, and variational methods are used to obtain two dimensional plate equations from three dimensional coupled electromechanical equations.
- In the mentioned methods, the variations across the thickness direction vanish by using the bending moments per unit length (or stress resultants). Thus, two dimensional plate equations for a step-wise laminated circular plate are obtained.

Equivalent Circuit

- Classical thin (Kirchoff) plate theory, Mindlin plate theory, and variational methods are used to obtain an equivalent circuit that consists of electrical and mechanical ports.
- The equivalent circuit is used to calculate important design parameters (ie. the electrical input impedance, the received signal, and the output displacement) when the device is loaded with a fluid.

Solutions of Equations

- The solutions for each region are expressed in terms of Bessel functions.
- The unknown coefficients for these solutions are obtained by imposing the boundary conditions in radial direction.
- Depending on the method and geometry used, the number of the boundary conditions and the unknown coefficients are 10, 12 or 14.

Transcendental matrix has dimensions of 10x10, 12x12, and 14x14.

Large Scale Prototype

 $r_{h} = 30 \ \mu m, r_{p1} = 1 \ mm, r_{p2} = 3 \ mm, r_{m} = 3.8 \ mm, t_{m} = 25 \ \mu m, and t_{p} = 20 \ \mu m.$

Large Scale Prototype

MEMS Device Measurements

- Devices have multiple resonance frequencies.
- Measured resonance frequencies at 380 kHz, 1.4 MHz, and 3.9 MHz in air.
- Resonance frequencies are predicted by the theory.

•
$$r_h = 3 \ \mu m, r_{p1} = 12 \ \mu m, r_{p2} = 46 \ \mu m, r_m = 58 \ \mu m, t_g = 0.1 \ \mu m, t_m = 0.25 \ \mu m, and t_p = 0.4 \ \mu m.$$

3-ports equivalent network is obtained by using modified Mindlin plate theory.

Using different piezoelectric materials or larger diameter devices results in obtaining the required displacement to eject fluids.

MEMS Device Interferometer Measurements

- In air. 0 dB = 0.5 m/V
- 90 µm diameter device
- 0.0053 μm/V @ 0.75 MHz 0.0070 ^{Log} μm/V @ 1.25 MHz 0.0090 μm/V
 @ 2.30 MHz 0.1500 μm/V @ 2.90 MHz 0.0175 μm/V @ 3.52 MHz
- 0.15 µm/V at 2.9 MHz is scaled from 0.003 µm/0.02 V.
- 1.2 nm/V at 900 KHz when oil loaded

Flextensional vs. Thickness Mode Transducers

	Longitudinal Mode Transducer			Flexural Mode Transducer		
Piezoelectric	PZT 5H Vernitron			Zinc oxide		
Relative permittivity	1470			11.1		
Area	0.0104 mm ²			0.0104 mm ²		
Thickness	6.35 mm	1.31 mm	488 μm	0.4 μm		
Capacitance (zero strain)	0.02 pF	0.10 pF	0.28 pF	2.56 pF		
Frequency	320 kHz	1.55 MHz	4.17 MHz	320 kHz	1.55 MHz	4.17 MHz
Displacement/Volt (in air)	81 nm/V	17 nm/V	6.5 nm/V	370 nm/V	160 nm/V	320 nm/V
Pressure/Volt (in air)	68 Pa/V	70 Pa/V	70 Pa/V	303 Pa/V	645 Pa/V	3478 Pa/V
Volt/Pressure (in air 50 Ω)	87 nV/Pa	88 nV/Pa	87 nV/Pa	380 nV/Pa	810 nV/Pa	4.3 μV/Pa
y ₂₁ (velocity/V when P=O)	0.17 m/s/V	0.17 m/s/V	0.17 m/s/V	1.3 m/s/V	8.3 m/s/V	16.4 m/s/V

 $I = y_{11}V + y_{12}P$ $\tilde{v} = y_{21}V + y_{22}P$

$$y_{21} = \frac{\tilde{v}}{V} \bigg|_{P=0} = -\frac{N_A}{Z_A}$$

Outline

Motivation

- MST and inkjet printing markets
- Large scale prototype device
- Ejection simulation
- Micromachined device
- Theory and equivalent circuit
- Samples of ejection by using MEMS device
- Conclusions and future work

Samples of Ejection by Using Micromachined Device

Water ejection from 22 x 22 (1 cm²) array

Water ejection thru 5 µm diameter orifice at 3.48 MHz

Conclusion and Future Work

- Proof of principle with large scale device.
- Micromachined transducers can be used in medical imaging and under water camera applications.
- The micromachined ejectors and ultrasonic transducers can be integrated with driving, receiving, and addressing circuits.
- Complete theory for vibrations of step-wise laminated plate in contact with a fluid can be developed.
- Different materials and geometry can be used to optimize the devices for either as an ejector or an ultrasonic transducer.

