# Processing of Model Dielectric Polymers: Parylenes

#### Russell Callahan, Kristin Grant Pruden, Gregory Raupp, Stephen Beaudoin

Arizona State University Department of Chemical and Materials Engineering Tempe, AZ 85287-6006





# Vision

- Develop environmentally-friendly, vapordeposited photoimageable dielectric polymers for microelectronic, biomaterial applications
  - Packaging
  - MEMS, BioMEMS
  - Interconnect processing
- Perform proof-of-concept experiments
- Develop fundamental process models for industry use in optimizing polymer applications





# **Significance of Research**

- Environmentally acceptable patterning, deposition
  - CO<sub>2</sub>, H<sub>2</sub>O, (HCl) are by-products of oxygen plasma etch
  - Vapor deposition eliminates solvent waste
- Characteristics
  - Parylene-N dielectric constant ~2.7
  - Well suited for packaging, MEMS, interconnect
    - $\Rightarrow$  patternable
    - $\Rightarrow$  thermally stable
- Biocompatible
  - Parylenes well-tolerated in vivo
    - $\Rightarrow$  parylene-C leading biomaterial
  - BioMEMS





# **Parylene Comparison**

| Property       | Parylene-N | Parylene-C | Parylene AF-4 |
|----------------|------------|------------|---------------|
| Dielectric     | 2.65       | 2.95       | 2.28          |
| constant       |            |            |               |
| Water vapor    | 1.50       | 0.14       | N/A           |
| transmission * |            |            |               |
| Melting point  | 410        | 290        | 510           |
| [°C]           |            |            |               |

\* [mol/100 in<sup>2</sup> in 24hr, 37°C, 90% RH]







#### Example: Microelectronic Processing With Directly Photoimageable Dielectric



## **Patterning of Parylene**



#### • Crosslinking

- UV light, absence of oxygen  $\rightarrow$  crosslinking
- Chain scission
  - UV light, oxygen ambient  $\rightarrow$  chain scission





## **Scope of Work**

- Experimental
  - measure chain scission
  - evaluate oxygen incorporation as a function of dose
  - determine how oxygen is incorporated into film

- Modeling
  - propose chain scission mechanism
  - evaluate rates of chain scission
  - model chain scission
     from a first-principles
     perspective





#### **Experimental Methods**

#### • Exposure

- UV germicidal lamp (peak output 253.7 nm)
  - ⇒ located ~ 5 inches above sample
- environment
  - $\Rightarrow$  air for chain scission
  - $\Rightarrow$  N<sub>2</sub> for crosslinking
- samples
  - ⇒ parylene-N and parylene-C coated Si wafer coupons

- Measurement of oxygen incorporation
  - RBS (surface)
  - SIMS (depth profiles)
- Determination of oxygenated structures
   – FTIR
- Concentration of available active sites
  - RBS
  - XRD



#### Depth Profile: Atomic Oxygen Incorporation into Film



#### **Atomic Oxygen Incorporation at Film Surface**



#### **1st Generation Model: Chain Scission**

#### Initiation

 $\mathbf{P}\mathbf{H} \rightarrow \mathbf{P} \cdot + \mathbf{H} \cdot$ 

#### Propagation

 $\begin{array}{ll} P \cdot \ + \ O_2 \ \rightarrow \ PO_2 \cdot \ (rate \ limiting) \\ PO_2 \cdot \ + \ PH \ \rightarrow \ PO_2 H \ + \ P \cdot \end{array}$ 

 $PO_{2}H \rightarrow PO \cdot + \cdot OH$  $PO \cdot \rightarrow A + P \cdot$ 

$$A + P \cdot \rightarrow A \cdot + PH$$

$$A + \cdot OH \rightarrow A \cdot + H_2O$$

$$A + PO_2 \cdot \rightarrow A \cdot + PO_2H$$

$$A \cdot + \cdot OH \rightarrow CA$$

Termination

 $\begin{array}{l} 2P \cdot \rightarrow PP & (Low O_2) \\ 2PO_2 \cdot \rightarrow PO_2PO_2(High O_2) \end{array}$ 



- Propagation is rate limiting
- Rate of initiation depends on light absorbance which is governed by Beer's Law
- Only chain PH bonds participate in reaction
- Termination mechanism depends on oxygen concentration
  - $\Rightarrow low concentration \rightarrow subatmospheric$
- IR showed aldehyde groups produced instead of carboxylic acids



#### **Model Equations**

$$\frac{\partial \Omega}{\partial \tau} = \frac{-L^2 k_{\perp} I_o (1 - e^{-aY\psi}) \Omega}{D} - \frac{D_a C_i \xi \Omega^{1/2} (1 - e^{-aY\psi})^{1/2}}{[PH_o]}$$

$$\frac{\partial \xi}{\partial \tau} = \frac{L^2}{Y^2} \frac{\partial^2 \xi}{\partial \psi^2} + \frac{\partial^2 \xi}{\partial \alpha^2} - D_a \xi \Omega^{1/2} (1 - e^{-aY\psi})^{1/2}$$

$$\frac{\partial \lambda}{\partial \tau} = D_a \xi \Omega^{1/2} (1 - e^{-aY\psi})^{1/2}$$

$$D_{a} = \frac{L^{2} k I_{o}^{1/2} [PH_{o}]^{1/2}}{D}$$



- $\xi$  = molecular oxygen concentration
- $\lambda$  = atomic oxygen concentration
- $\Omega$  = available reaction site concentration
- $\tau = time$
- $\Psi$  = film depth
- $\alpha$  = film width
- $C_i$  = initial molecular oxygen concentration
- Y = maximum film thickness
- L = maximum film width
- k = combined reaction rate constant
- $k_1$  = initiation reaction rate constant
- $I_0 =$ incident dose
- a = light absorbance
- $[PH_o] = initial reaction site concentration$

#### **Model Parameters**

| Initial Oxygen Concentration<br>(mol/cm <sup>3</sup> )                                 | 7x10 <sup>-5</sup>         |
|----------------------------------------------------------------------------------------|----------------------------|
| Combined Rate Constant<br>(cm <sup>5/2</sup> /mW <sup>1/2</sup> mol <sup>1/2</sup> -s) | <b>1.43x10<sup>5</sup></b> |
| Combined Initiation Rate Constant<br>(cm <sup>2</sup> /mW-s)                           | 1x10 <sup>-3</sup>         |
| Initial Reaction Site Concentration<br>(mol/cm <sup>3</sup> )                          | 2.4x10 <sup>-2</sup>       |
| Diffusion Coefficient<br>(cm <sup>2</sup> /s)                                          | 1x10 <sup>-7</sup>         |
| Damköhler Number                                                                       | 7x10 <sup>9</sup>          |





## **Diffusion and Reaction in Parylene**

- Diffusion mechanisms
  - thick films
    - $\Rightarrow$ solution-diffusion
    - ⇒predict diffusion constant based on time lag method
  - thin films (<  $8\mu m$ )
    - $\Rightarrow$  pore flow + solution-diffusion
    - ⇒predicted diffusion coefficients do not apply
    - ⇒permeability can change up to several orders of magnitude as film thickness decreases

- Available reactive sites
  - crystallinity
    - ⇒only amorphous sections can be penetrated by diffusing oxygen
    - ⇒parylene-N is typically crystalline
    - ⇒our films were 32% crystalline
      - validated at ASU with XRD
  - chain length distribution
    - ⇒no evidence that C/H ratio was non-ideal
    - $\Rightarrow$  polymer consists of long chains



#### Model Validation: Atomic Oxygen **Incorporation into Film**



#### Model Validation: Atomic Oxygen Incorporation at Film Surface



16

## Conclusions

- Observed that parylene-C undergoes chain scission at the same rate as parylene-N
  - suggests oxygen incorporation/chain scission through chain carbons
- Model correctly predicts experimental observations
  - depth profile and saturation behavior
- Future work
  - examine dependence of chain scission rate on initial oxygen concentration and temperature





# **Research Goals: Parylene Etching**

- Investigate effects of process variables on etch performance
  - Temperature
  - Pressure
  - Total gas flow
- Develop experimentally-validated transport and reaction models
- Develop mechanistic description of etching
- Used to develop processing and integration protocols for parylene use



# **Downstream Etching Apparatus**

- 250 W Astex microwave generator to create downstream oxygen plasma
- Base pressure =  $4x10^{-7}$ Torr
- Temperature controlled substrate holder





## **Experimental Results: Etch Rate as a Function of Pressure and Flow Rate**



ARIZONA STATE U 20

# **Comparison of Parylene Etch Data**



## Comparison of Parylene Etch Data







## **Downstream Plasma Etch Model**



## **Plasma Model**





# **Oxygen Plasma Models**

- One plasma model
  - A.T. Bell and K. Kwong, AIChE J. **18**, 990 (1972).
- Three sets of dissociation cross-sections
  - P.E. Luft, Joint Inst. For Lab. Astrophysics, Univ. of Colorado, Boulder, Report 14, 1975.
  - P.C. Cosby, J. Chem. Phys. **98**, 9560 (1993).
  - M.A. Lieberman and A.J. Lichtenberg, *Principles of Plasma Discharges and Materials Processing* (John Wiley & Sons, New York, NY, 1994).



## **Predicted Atomic Oxygen Mole Fraction at Plasma Outlet**



## Afterglow Model: Simultaneous Transport and Reaction

• Dimensionless momentum equations

$$\operatorname{Re}\left(v_{r}^{*}\frac{\partial v_{z}^{*}}{\partial r^{*}}+v_{z}^{*}\frac{\partial v_{z}^{*}}{\partial z^{*}}\right)=\frac{1}{r^{*}}\frac{\partial}{\partial r^{*}}\left(r^{*}\frac{\partial v_{z}^{*}}{\partial r^{*}}\right)+\frac{\partial^{2}v_{z}^{*}}{\partial z^{*2}}-\operatorname{Re}\frac{\partial P^{*}}{\partial z^{*}}$$
$$\operatorname{Re}\left(v_{r}^{*}\frac{\partial v_{r}^{*}}{\partial r^{*}}+v_{z}^{*}\frac{\partial v_{r}^{*}}{\partial z^{*}}\right)=\frac{\partial}{\partial r^{*}}\left(\frac{1}{r^{*}}\frac{\partial}{\partial r^{*}}(r^{*}v_{z}^{*})\right)+\frac{\partial^{2}v_{r}^{*}}{\partial z^{*2}}-\operatorname{Re}\frac{\partial P^{*}}{\partial r^{*}}\right)$$

• Dimensionless Mass Balance

$$\left(\frac{1}{r^*}\frac{\partial}{\partial r^*}r^*\frac{\partial y_o}{\partial r^*} + \frac{\partial^2 y_o}{\partial z^{*2}}\right) - \operatorname{Pe}\left(v_r^*\frac{\partial y_o}{\partial r^*} + v_z^*\frac{\partial y_o}{\partial z^*}\right) - 2\operatorname{Da}_2 y_o^2(1-y_o) - 2\operatorname{Da}_3(y_o)^3 - \operatorname{Da}_4 y_o(1-y_o)^2 = 0$$





# **Boundary Conditions**

| Location                  | V <sub>z</sub> *                          | <b>P</b> *                                                | y <sub>o</sub>                                        |
|---------------------------|-------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|
| z*=0                      | $2(1-4r^{*2})$                            | Determined                                                | From plasma                                           |
|                           |                                           | from iteration                                            | model                                                 |
| r*=0                      | $\frac{\partial v_z^*}{\partial r^*} = 0$ | $\frac{\partial \mathbf{P}^*}{\partial \mathbf{r}^*} = 0$ | $\frac{\partial y_0}{\partial r^*} = 0$               |
| z*=L(exit)                | $\frac{\partial z}{\partial r_z^*} = 0$   | $P^* = 0$                                                 | $\frac{\partial y_0}{\partial r^*} = 0$               |
| any physical<br>surface i | $v_z^* = 0$                               | $\frac{\partial \mathbf{P}^*}{\partial n^*} = 0$          | $\frac{\partial y_0}{\partial n^*} = -Da_i \cdot y_0$ |

n is the normal direction to the boundary

 $v_r^*=0$  at every boundary





## Afterglow Model Result: Atomic Oxygen Mole Fraction

• Solved system of equations using a finite element method  $x_{(0,0,59,20)}^{x_0}$ 



0.24

0.23

20 19

16

0.10 0.09

0.08

0.07 0.06 0.05 0.04

#### **Atomic Oxygen Concentration at Sample Surface as** a Function of Pressure and Flow Rate



# **Parylene-N Etch Model**

• Etch rate is dependent on oxygen atom concentration

Etch Rate = 
$$k_o \exp(-E_a / RT) N^{\alpha} y_o^{\alpha}$$

- $\alpha$  is the reaction order
- Used average  $k_o$  and  $E_a$  to generate etch rate model





## **Comparison of Model and Experiment Using Etch Rate Model**



## **XPS Analysis for Pa-N**

- Peak identification
  - 285.0 saturated carbon
  - 286.2-286.7 aromatic carbon
  - 287.5 oxygen contamination
  - 289.5 carboxylic groups
- Post-etch XPS shows the ratio of aromatic carbon to saturated carbon has been reduced



## **XPS Analysis for Pa-C**

- Peak identification
  - 283.5 aromatic carbon
  - 285.0 saturated carbon
- Evidence of saturated carbon after etching



## XPS Analysis for AF-4

- Peak identification
  - 283.7-284.2 aromatic carbon
  - 285.4 saturated carbon
  - 286.6-286.9 carbon bonded to fluorine
  - 288.4 carbon bonded to oxygen
- Evidence of saturated carbon after etching and carbonyl formation



## **Atomic Composition of Etched Films**



# **Bond Strengths**

| <b>Bond Dissociation Energies for Typical</b> |                          |  |  |  |
|-----------------------------------------------|--------------------------|--|--|--|
| <b>Bonding Found in Parylene-N</b>            |                          |  |  |  |
| Bond Broken                                   | <b>Bond Dissociation</b> |  |  |  |
|                                               | Energy [kcal/mol]        |  |  |  |
| $C_6H_5$ —H                                   | 110                      |  |  |  |
| $C_6H_5$ —Cl                                  | 86                       |  |  |  |
| $C_6H_5CH_2-H$                                | 85                       |  |  |  |
| CH <sub>3</sub> -CH <sub>3</sub>              | 83                       |  |  |  |
| $C_6H_5CH_2$ — $CH_2C_6H_5$                   | 47                       |  |  |  |





## **Chain Break Mechanism**



## **Etch Reaction Mechanism**



Etch Rate=k[O•]<sup>0.5</sup>[RH]



# **Comparison of Relative Etch Rates**



## Conclusions

- Parylenes etch at different rates in a remote oxygen plasma afterglow
- The apparent activation energies for etching each polymer are equivalent
- A plasma model and transport model were combined to predict the oxygen atom concentration at the polymer surface
- A reaction order of 0.5 yielded good agreement between experimental and model data





# Conclusions

- Film analysis indicates carbonyl formation and ring openings after films are exposed to the remote plasma
- A possible etch mechanism was proposed which was based on the model and film analysis results
- The rate limiting step involved the ring opening





# Acknowledgements

- NSF/EPA Technology for a Sustainable Environment Grant CTS-9613377
- NSF Career Grant CTS-9984620
- NSF/SRC Center for Environmentally Benign Semiconductor Manufacturing
- The ASU Center for Solid State Electronics Research (CSSER)
- Tim Karcher, Barry Wilkens, Rick Hervig and Klaus-Peter Schulz with the ASU Center for Solid State Science (CSSS)
- Scott Gold for assistance with FTIR
- Kaustubh Gadre for assistance with XRD
- Ron Synowicki with J.A. Woollam for assistance with ellipsometry modeling



