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• Develop environmentally-friendly, vapor-
deposited photoimageable dielectric polymers for
microelectronic, biomaterial applications
– Packaging
– MEMS, BioMEMS
– Interconnect processing

• Perform proof-of-concept experiments
• Develop fundamental process models for

industry use in optimizing polymer applications



3

• Environmentally acceptable patterning, deposition
– CO2, H2O, (HCl) are by-products of oxygen plasma etch
– Vapor deposition eliminates solvent waste

• Characteristics
– Parylene-N dielectric constant ~2.7
– Well suited for packaging, MEMS, interconnect

� patternable
� thermally stable

• Biocompatible
– Parylenes well-tolerated in vivo

� parylene-C leading biomaterial
– BioMEMS
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Property Parylene-N Parylene-C Parylene AF-4
Dielectric
constant

2.65 2.95 2.28

Water vapor
transmission *

1.50 0.14 N/A

Melting point
[°C]

410 290 510

* [mol/100 in2 in 24hr, 37ºC, 90% RH]
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Example: Microelectronic Processing With
Directly Photoimageable Dielectric
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• Crosslinking
– UV light, absence of oxygen → crosslinking

• Chain scission
– UV light, oxygen ambient → chain scission

Patterning of Parylene

Etch

Negative Development

Etch

Positive Development
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Scope of Work

• Experimental
– measure chain scission
– evaluate oxygen

incorporation as a
function of dose

– determine how oxygen
is incorporated into
film

• Modeling
– propose chain scission

mechanism
– evaluate rates of chain

scission
– model chain scission

from a first-principles
perspective
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Experimental Methods

• Exposure
– UV germicidal lamp

(peak output 253.7 nm)
� located ~ 5 inches

above sample

– environment
� air for chain scission
� N2 for crosslinking

– samples
� parylene-N and

parylene-C coated Si
wafer coupons

• Measurement of
oxygen incorporation
– RBS (surface)
– SIMS (depth profiles)

• Determination of
oxygenated structures
– FTIR

• Concentration of
available active sites
– RBS
– XRD
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Depth Profile:  Atomic Oxygen
Incorporation into Film
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• Our system
– Propagation is rate limiting
– Rate of initiation depends on

light absorbance which is
governed by Beer’s Law

– Only chain PH bonds
participate in reaction

– Termination mechanism
depends on oxygen
concentration
� low concentration →

subatmospheric
– IR showed aldehyde groups

produced instead of
carboxylic acids

Initiation
PH  →→→→  P·  +  H·

Propagation
P·  +  O2  →→→→  PO2·  (rate limiting)
PO2·  +  PH  →→→→  PO2H  +  P·

PO2H  →→→→  PO·  +  ·OH
PO· →→→→ A + P·

A + P· →→→→ A· + PH
A + ·OH →→→→ A· + H2O
A + PO2· →→→→ A· + PO2H
A· + ·OH →→→→ CA

Termination
2P·  →→→→  PP (Low O2)
2PO2·  →→→→  PO2PO2 (High O2)

1st Generation Model: Chain Scission
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Model Parameters

Initial Oxygen Concentration
(mol/cm3)

7x10-5

Combined Rate Constant
(cm5/2/mW1/2mol1/2-s)

1.43x105

Combined Initiation Rate Constant
(cm2/mW-s)

1x10-3

Initial Reaction Site Concentration
(mol/cm3)

2.4x10-2

Diffusion Coefficient
(cm2/s)

1x10-7

Damköhler Number 7x109
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Diffusion and Reaction in Parylene

• Diffusion mechanisms
– thick films

�solution-diffusion
�predict diffusion constant

based on time lag method

– thin films (< 8µm)
�pore flow + solution-diffusion
�predicted diffusion

coefficients do not apply
�permeability can change up to

several orders of magnitude as
film thickness decreases

• Available reactive sites
– crystallinity

�only amorphous sections can
be penetrated by diffusing
oxygen

�parylene-N is typically
crystalline

�our films were 32% crystalline
–  validated at ASU with XRD

– chain length distribution
�no evidence that C/H ratio was

non-ideal
�polymer consists of long chains
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Model Validation:  Atomic Oxygen
Incorporation into Film
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Model Validation:  Atomic Oxygen
Incorporation at Film Surface
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Conclusions

• Observed that parylene-C undergoes chain
scission at the same rate as parylene-N
– suggests oxygen incorporation/chain scission

through chain carbons
• Model correctly predicts experimental

observations
– depth profile and saturation behavior

• Future work
– examine dependence of chain scission rate on

initial oxygen concentration and temperature
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• Investigate effects of process variables on etch
performance

– Temperature
– Pressure
– Total gas flow

• Develop experimentally-validated transport and
reaction models

• Develop mechanistic description of etching
• Used to develop processing and integration

protocols for parylene use
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• 250 W Astex microwave
generator to create
downstream oxygen
plasma

• Base pressure = 4x10-7

Torr
• Temperature controlled

substrate holder
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Plasma
Model

Afterglow Model

Etch Reaction
Model
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• Well mixed reactor

– Generation and recombination reactions

Fi, out = Fi,in − (−ri)V

r1 : O2 + e → 2O + e
r2 : 2O + O2 → 2O2

r3 : 3O → O + O2

r4 : O + 2O 2 → O3 + O2

r5 : 2O + S → O2 + S

Fi,in Fi,out

e-
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• One plasma model
– A.T. Bell and K. Kwong, AIChE J. 18, 990

(1972).
• Three sets of dissociation cross-sections

– P.E. Luft, Joint Inst. For Lab. Astrophysics,
Univ. of Colorado, Boulder, Report 14, 1975.

– P.C. Cosby, J. Chem. Phys. 98, 9560 (1993).
– M.A. Lieberman and A.J. Lichtenberg,

Principles of Plasma Discharges and Materials
Processing (John Wiley & Sons, New York,
NY, 1994).
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• Dimensionless momentum equations

• Dimensionless Mass Balance
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vr*=0 at every boundary

Location vz* P* yO

z*=0 2 1− 4r*2( ) Determined
from iteration

From plasma
model

r*=0 ∂vz
*

∂z* = 0 ∂P*

∂z* = 0
∂yO

∂z* = 0

z*=L(exit) ∂vz
*

∂r* = 0 P* = 0 ∂yO

∂r* = 0

any physical
surface i

vz
* = 0 ∂P*

∂n* = 0
∂yO

∂n * = −Da i ⋅ yO

n is the normal direction to the boundary
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Pressure = 1.0 Torr
Flow Rate = 125 sccm

• Solved system of equations using a finite
element method
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Atomic Oxygen Concentration at Sample Surface as
a Function of Pressure and Flow Rate
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• Etch rate is dependent on oxygen atom
concentration

•  α is the reaction order
• Used average ko and Ea to generate etch rate

model

Etch Rate = ko exp(−Ea / RT )Nα yo
α
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• Peak identification
– 285.0 saturated carbon
– 286.2-286.7 aromatic carbon
– 287.5 oxygen contamination
– 289.5 carboxylic groups

• Post-etch XPS shows the ratio of
aromatic carbon to saturated carbon
has been reduced

XPS Analysis for Pa-N Un-etched

Etched
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XPS Analysis for Pa-C

• Peak identification
– 283.5 aromatic carbon
– 285.0 saturated carbon

• Evidence of saturated
carbon after etching

Un-etched

Etched
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XPS Analysis for
AF-4

• Peak identification
– 283.7-284.2 aromatic carbon
– 285.4 saturated carbon
– 286.6-286.9 carbon bonded to

fluorine
– 288.4 carbon bonded to oxygen

• Evidence of saturated
carbon after etching and
carbonyl formation

Un-etched

Etched
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Bond Dissociation Energies for Typical
Bonding Found in Parylene-N

Bond Broken Bond Dissociation
Energy [kcal/mol]

C6H5—H 110
C6H5—Cl 86

C6H5CH2—H 85
CH3-CH3 83

C6H5CH2—CH2C6H5 47
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carbon
oxygen

+

hydrogen

+

radical
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++++

Etch Rate=k[O•]0.5[RH]



41

0.614/6 (0.66)4

0.865/6 (0.83)5

6

Measured relative
etch rate to pa-N

Theoretical
relative etch rate
to pa-N

Number of sites
available for ring
opening
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• Parylenes etch at different rates in a remote
oxygen plasma afterglow

• The apparent activation energies for etching
each polymer are equivalent

• A plasma model and transport model were
combined to predict the oxygen atom
concentration at the polymer surface

• A reaction order of 0.5 yielded good
agreement between experimental and model
data
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• Film analysis indicates carbonyl formation
and ring openings after films are exposed to
the remote plasma

• A possible etch mechanism was proposed
which was based on the model and film
analysis results

• The rate limiting step involved the ring
opening
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