CMP Waste Treatment with a Forced-Flow Electrophoresis Device

(Subtask A-4-1)

Jamie L. Ludke Milan Bier James C. Baygents

The University of Arizona

Outline

- Motivation
- Description of Forced-Flow Electrophoresis
- Results
- Additional Research
- Potential Transfer of Technology
- Concluding Remarks

ITRS Technology Barrier: Sustainability vs. Resource Consumption

In 2002 CMP will constitute approximately 30% of UPW usage. UPW consumption continues to exceed Roadmap goals.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

ITRS Technology Barrier: Sustainability vs. Resource Consumption (cont.)

Current Trend[†]

- One CMP tool requires:
 - o 7,000 gallons of UPW per day
 - 12,000 gallons feed water per day
- As device linewidths shrink additional CMP will be required

ITRS Goals[‡]

- Net feed water consumption drop from 13 gal/in² (of silicon) to 2 gal/in² by 2008
- Obtain environmental sustainability through waste management

- † Corlett, G. Advancing Applications in Contamination Control 2000, 3(11), 9.
- ‡ Semiconductor Industry Association International Technology Roadmap for Semiconductors: 1999 edition; International SEMATECH: Austin, Texas, 1999; pg. 253.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

ITRS Technology Barrier: Waste Production vs. Environmental Regulations

Single fabrication plant produces 200 GPM of CMP effluent.[†]

[†] Maag, Benoit, "Copper CMP Effluent Flow in a Semiconductor Facility", NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing TeleSeminar, April 6, 2000

ITRS Technology Barrier: Waste Production vs. Environmental Regulations (cont.)

Waste Characteristics[†]

- 50-5000 ppm total suspended solids
- 0.1-50 ppm soluble copper

Environmental Regulations[†]

Waste must be reduced to the following levels prior to discharge to waste treatment system:

- < 5 ppm total suspended solids
- 0.1-2 ppm soluble copper
- Regulations vary according to location.
 San Jose Code Limitations:[‡] Cu = 2.7 ppm
 Austin Code Limitations:[‡] Cu = 1.9 ppm

Raghavan, S. *Treatment of CMP Wastes*; Fourth Year Annual Report of the NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing on Grant EEC-9528813; University of Arizona: Tucson, Arizona, 2000; Vol. II, pg. 30.
 Corlett, G. *Advancing Applications in Contamination Control* December 1998, pg. 19.

Forced-Flow Electrophoresis (FFE)

Research Objectives

- Liquid/solid separation
 - good performance at high concentrations; retard filter cake buildup
 - create possibilities for water recycle/reuse
- Copper removal from waste stream

ESH Impact

- Recovery and recycle of water
- Help achieve ITRS goals for environmental sustainability through waste management
- Compliance with environmental regulations for waste streams

Outline

- Motivation
- Description of Forced-Flow Electrophoresis
- Results
- Additional Research
- Potential Transfer of Technology
- Concluding Remarks

FFE: Cross-Flow Filtration with Electric Field

Permeate

- An electric field E enhances cross-flow filtration process by electrophoretically driving particles away from filter surface, while driving electrodialysis of ionic solutes (e.g. Cu)
- Thus: (1) filter cake is suppressed and filter effectiveness maintained; and (2) the permeate is either enriched with, or depleted of, ionic solutes (including Cu), depending on the type of membrane used (e.g. cation exchange or anion exchange)

Expanded FFE Cell Assembly

- A End plate with Platinum Electrode
- **B** Dialyzing Membrane
- **C** Input Spacer for 1st Cell
- **D** Micro Filter (Whatman, 20 µm)
- E Output Spacer for 1st Cell
- **F** Dialyzing Membrane
- G Input Spacer for 2nd Cell
- **H** Micro Filter (Whatman, 20 μm)
- Output Spacer for 2nd Cell
- J Dialyzing Membrane
- K Input Spacer for 3rd Cell

Device Components and Operating Conditions

- Electrodes: platinum
- Membranes: regenerated cellulose (weak cation exchange properties)
- Filters: Whatman[®], 20 μm porosity
- Influent flow rate: 80 ml/min
- Permeate and retentate flow rate: 40 ml/min
- Effective volume: 180 ml

Entire FFE Apparatus

FFE Apparatus

- FFE method developed by: Bier, M. et al., **1959**
- Additional research on FFE: Henry, et al., 1977 Wakeman, et al., 1987
- Review of FFE Huotari, et al., **1999**

Outline

- Motivation
- Description of Forced-Flow Electrophoresis
- Results
- Additional Research
- Potential Transfer of Technology
- Concluding Remarks

CMP Waste Characteristics

Waste Stream	Turbidity (NTU)	Conductivity (μS/cm)	рН	Cu ⁺⁺ Conc. (ppm)
Model Oxide	450 [†]	230	10.5	
Texas Instruments	1550	160	9.0	
Model Copper	410 [‡]	570	5.0	20

[†] 1000 ppm Klebosol[®] colloidal silica; mean particle size, 80 nm
 [‡] 900 ppm Klebosol[®] colloidal silica; mean particle size, 80 nm

Electrophoretic Filtration of Particles for Model Oxide CMP Waste

Turbidity = 450 NTU pH = 10.5

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

16

Electrodialysis Mechanism

Electrodialysis of Ionic Solutes for Model Oxide CMP Waste

FFE of Industrial Oxide CMP Waste from Texas Instruments Inc.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Electrophoretic Filtration of Particles for Model Copper CMP Waste

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

20

Electrodialysis of Ionic Solutes for Model Copper CMP Waste

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Electrodialysis of Copper for Model Copper CMP Waste

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Energy Consumption: Forced-Flow Electrophoretic Filtration vs. Mechanical Filtration

Filtration Technique	Energy Consumption/ Permeate Flow Rate
Ultrafiltration (with 45% pump efficiency)	5 kJ/gallon of permeate
FFE Industrial Oxide CMP Waste Conductivity = 160 μS/cm	3 kJ/gallon of permeate
FFE Model Copper CMP Waste Conductivity = 570 μS/cm	20 kJ/gallon of permeate

Outline

- Motivation
- Description of Forced-Flow Electrophoresis
- Results
- Additional Research
- Potential Transfer of Technology
- Concluding Remarks

Effects of Various Additives on FFE Process: Electrodialysis of Copper

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Effects of Various Additives on FFE Process Electrodialysis of Copper (cont.)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Effects of Various Additives on FFE Process Electrophoretic Filtration of Particles (cont.)

Effects of Various Additives on FFE Process Electrophoretic Filtration of Particles (cont.)

Influent Suspension Characteristics: Conductivity = 570 µS/cm pH = 5.0

Effect of Various Additives on Electrophoretic Mobility of Particles and Copper

Capillary Electrophoresis

- Additives effect electrophoretic mobilities of particles or copper?
- Additives effect distribution of particle mobilities?

FFE with Strong Cation Exchange Membranes

FFE with Strong Cation Exchange Membranes (cont.)

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

FFE with Strong Cation Exchange Membranes (cont.)

Outline

- Motivation
- Description of Forced-Flow Electrophoresis
- Results
- Additional Research
- Potential Transfer of Technology
- Concluding Remarks

Potential Industrial Applications

1. Use as filtration device on each individual CMP tool.

- Forced-flow electrophoresis device (FFE) could act as a CMP tool "kidney" that could be switched on and off according to demands of CMP tool.
- Permeate stream, reduced of particle and copper contamination, could be recycled back into the CMP process.

Potential Transfer of Technology (cont.)

2. Use immediately before standard ultra-filtration (UF) and ion-exchange (IX) processes to pre-treat CMP waste.

• Forced-flow electrophoresis pre-treatment will yield less consumables (e.g. UF cartridges, ion-exchange resin, etc.)

Industry Interaction

The following companies have provided assistance:

- Semiconductor Research Corporation
- **Texas Instruments**, Jeff Joiner and John DeGenova
- **lonics**, *Ted Prato and Russ MacDonald*
- Pall Corporation, Joe O'Sullivan

Outline

- Motivation
- Description of Forced-Flow Electrophoresis
- Results
- Additional Research
- Potential Transfer of Technology
- Concluding Remarks

Concluding Remarks

- Have demonstrated simultaneous removal of particles (ca. 90 to 99%) and ions (including >85% of Cu) from CMP permeate streams.
- Energy requirements are not significantly different from those of standard ultrafiltration.
- FFE may have the potential to serve as a CMP waste management device and could help the semiconductor industry comply with the environmental regulations for the waste streams.