CVD Emissions - Analysis and Treatment

Brian Goolsby Motorola SPS Digital DNA™ Laboratories

Acknowledgments

- Victor Vartanian Motorola EPI
- Kim Reid formerly of Motorola
- Joe VanGompel BOCE

Overview

- CVD Trends Steering Characterization Needs
- Process Emissions Characterization
- Examples of CVD Processes Evaluated
- Point of Use Abatement
- Examples of CVD Emissions Abatement
- Conclusions

New Materials Everywhere!

•New materials & processes are being introduced at an unprecedented rate

- •Films are thinner
- Utilization should be improved

Advanced Gate Stack

- Metal oxide gate dielectric (replaces SiO₂)
 - oxides or silicates of Ti, Ta, Sr, Zr, Hf, Al, Y, Sn, La, etc.
- Metal gate electrode (replaces doped polysilicon)
 metals and nitrides of W, Ti, Ta, Mo, Al, Pt, etc.
- CVD process using metal-based precursors

Advanced Metallization

intelligence everywhere"

Low k Dielectrics

- Carbon-doped, porous organosilicates, porous polymers
- Spin-on
- CVD
 - organosilanes, siloxanes, halosiloxanes, silicones, etc.

MOTOROL

diaitaldna

The Need for Analytical Data

Process Emissions Characterization

- Mass Spectrometry
 - Chamber monitoring, by-product identification
 - Emerging methods
 - high pressure sampling
 - trapping instruments
 - activated dissociation
- FTIR
 - Species quantification, high mass precursor identification, abatement efficiency determination
- Chemical-Specific
 - Limited in scope and availability, very sensitive

Analytical Sampling Schematic

intelligence kerywhere"

мотовоца 😽 digital dna^{*}

Metal-based CVD Precursors and Process By-Products Detected

- Tetranitrato titanium (TN)
 - $-NO, NO_2, HNO_3$
- Titanium tetrachloride (TiCl₄)
 HCI
- TDMAT
 - Dimethylamine, ammonia
- Zirconium t-butoxide
 - t-butanol, isobutylene, propylene
- Hafnium t-butoxide
 - t-butanol, isobutylene, propylene

MOTORO

digitaldna

Simultaneous Unutilized Precursor and Reaction Byproduct Monitoring for TN

Mass Spectrum of Hf-t-Butoxide Process

intelligence everywhere"

13 **MOTOROLA** digital dna

Ligand By-product Reactions

Proposed reaction for:

Hf-t-butoxide

Cleavage during deposition (surface reaction)

FTIR Spectra from TDMAT Process

15

digitaldna

TDEAH

- Tetrakis diethylamino Hafnium
- Highly flammable, toxic, corrosive
- Reacts violently with water
 - forms diethylamine (toxic, extremely flammable)
- Require amine sensor (TGM) in ampoule cabinet, tool, area

Shows diethylamine by-product

intelligence everywhere"

Mass Spectrum from TDEAH

Mass Spectrum During TDEAH Deposition

17 мотояоца 🗱

Handling Process Emissions

- Point of Use Abatement Devices
 - Minimize overall EHS impacts of precursors and by-products
 - Minimize personnel exposure during maintenance
 - Remove acid gases
 - Remove unreacted precursor to prevent deposition in exhaust ducts or release to environment

DESTRUCTION OR CONVERSION	ENTRAINMENT
-Resistive heating -Flame -Catalytic	-Chemical canister -Water scrubbing

Edwards GRC

Courtesy BOC Edwards, Joe Van Gompel

D150 GRC Dual system

GRC Performance for TN

TiCl₄

- Material itself is corrosive, poisonous
- HCl is hazardous decomposition product (upon exposure to air/water)

monitor for HCI as TGM

- In closed CVD system, TiCl₄ and reaction byproducts contained
 - HCI formed from unreacted TiCl₄ in exhaust
 - chamber maintenance becomes an issue

GRC Performance for TiCl₄

intelligence keverywhere"

23

digitaldna

GRC Performance with Zr t-butoxide

digitaldna

GRC Performance for Hf t-butoxide

Effect of GRC on Hf-t-Butoxide

CDO

Nitride Deposition - CDO Performance

intelligence everywhere"

28

MOTOROLA

digitaldna

Summary

- CVD emissions typically consist of unreacted precursor and ligand materials
 - determine process efficiency
 - evaluate abatement
- Collect predictive data during R&D phase
- Work with suppliers and engineers to aid design of appropriate molecules

- Abatement solution needs to fit job
- Abatement devices can be tweaked

