New Method for Determining Reactor Mean Residence Time and Extent of Dispersion in CMP Processes

Erin Mitchell, Scott Olsen & Ara Philipossian

University of Arizona Department of Chemical & Environmental Engineering Tucson, AZ USA

October 2001

Driving Force

Characterization and fundamental understanding of the fluid dynamics of the CMP process will lead to the development of environmentally benign processes & equipment and reduced slurry usage

Outline

- Generic Residence Time Distribution (RTD) technique
- Equations describing Mean Residence Time (τ) & Dispersion (D)
- Current Best Known Method (BKM) for determining τ & D in CMP
- Proposed method for determining τ & D in CMP
 - Experimental procedure
 - Preliminary data
- Methods comparison
- Future plans

The Residence Time Distribution Technique

The Residence Time Distribution Technique

Governing Equations

$$\begin{aligned} \tau &= \int_{0}^{t} t \times C(t) dt \\ \theta &= \frac{t}{\tau} \\ \sigma^{2} &= \int_{0}^{\infty} (\theta - 1)^{2} \times C(\theta) d\theta \\ \frac{\partial C}{\partial t} &+ u \frac{\partial C}{\partial x} = D \frac{\partial^{2} C}{\partial x^{2}} \\ \sigma^{2} &= D^{2} \left[\frac{2}{D} + 8 \right] \text{ (open system)} \\ \rho &\to \infty(CSTR) \quad D \to 0(PFR) \end{aligned}$$

Dual-Emission UV-Enhanced Fluorescence Imaging for CMP RTD

Current BKM for CMP RTD

Experimental Procedure

- Pad:
 - Rodel IC-1000 perforated (no sub-pad)
 - 30 minute conditioning followed by 1 minute wafer break-in
- Conditioning:
 - In-situ conditioning with 100 grit diamond disk
 - Disk speed ... 30 rpm
 - Sweep frequency 20 times per minute
- Polisher conditions:
 - Platen speed ... 40 & 80 rpm (matched to wafer speed)
 - Wafer pressure ... 2 psi
 - Slurry flow rate ... 40 & 80 cc per minute
- Slurries:
 - Conventional 25% silica slurry for ILD polish
 - Conventional 2.5% silica slurry for ILD polish

COF-RTD (Raw Data)

COF-RTD

(Fitted & Normalized Data)

COF-RTD Results

Flow Rate (CCPM)	Platen Speed (RPM)	Pressure (PSI)	τ ₁ (sec)	τ ₂ (sec)
40	40	2	7.21	7.07
80	40	2	5.22	4.85
40	80	2	9.28	7.21
80	80	2	5.90	5.06

Methods Comparison

	DEUVIF-RTD	COF-RTD
Need for image acquisition hardware & software	Y	Ν
Compatible with actual silicon wafer substrate	N	Y
Compatible with actual retaining ring	N	Y
Compatible with carrier film	N	Y
Need for a dark room	Y	Ν
Data obtained from entire substrate	N	Y
Need for dyed pad *	Y	Ν
Data skewed due to wafer substrate shape change during polish **	Y	Ν
Accurate & precise	Y	TBD

* Dyed pads may have different mechanical characteristics compared to conventional pads

** Wafer shape change leads to hysterisis which in turn leads to uneven load distribution

Future Plans

- Determine accuracy and precision of COF-RTD technique
- Determine how the following parameters affect mean residence time and dispersion:
 - Slurries
 - Pads
 - Pad groove shapes
 - Diamond grit sizes
 - Conditioning recipes
 - Slurry flow rates
 - Wafer pressures
 - Wafer and platen rotational speeds
- Develop comprehensive fluid dynamics model which describes the above observations

