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Motivation
�  Decrease in fresh water supply
�  Increase of water cost by desalination due to

 high demand
�  Seawater ,Brackish water, Evap Pond Waters

�  Salinity is defined as g of salt per kg of solution
�  Seawater

•  Salinity of the world oceans varies from 30-50 g/kg
� Brackish water

•  Waters with salinity of 5 g/kg or less
� Evaporative Pond Waters

• Saturated salt solutions of 300 g/kg crystallized



Desalination Plant-General
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Bakish, Robert.  Practice of Desalination. New Jersey, 1973



Background - MED

GOR = 0.8*Number of Effects

Spiegler, K.S. and Laird, A.D. K.  Principles of Desalination: Part A 2nd ed.  New York, 1980
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Background - MSF
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GOR values range from 4-12

Howe, Everett D.  Fundamentals of Water Desalination. New York, 1974



Background - RO
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Spiegler, K.S. and Laird, A.D. K.  Principles of Desalination: Part B 2nd ed.  New York, 1980



Dewvaporation - Theory
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�  Uses air as a carrier gas in a contact  tower
�  Operates at atmospheric pressure and below

 boiling point
� Air Fan and Feed Pump
�  Towers are composed of

�  Polypropylene and nylon plastic materials
�  evaporation and dewformation side separated by

 thin inexpensive non-corrosive plastic heat transfer
walls

Dewvaporation at ASU



� Objective I
�  Minimum Gamma
�  Design a tower for the Dewvaporation technique

�  Objective II
�  Develop a mathematical model for the

 Dewvaporation
�  Develop an approximate solution of the theory

�  Objective III
�  Scaling phenomena
�  Different runs on few of the potential designs

Research  Objectives at ASU



Surface wetting

�  Minimum gamma Minimum gamma (lb of
feed liquid/hr. /ft of width)

Without
gauze

REXAM

Polypropylene

12 ~1

>12

~1

Percent
Coverage

With
gauze*

Polypropylene
twin wall >12

~1

•Nylon



Plastic Design Choices
Plastic material

Mylar
(3 mil)

Polypropylene
(1 mil)

Twin walls
(9 mil)

Vertical spacers
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Horizontal spacers

Reticulated foam

Vertical flow

W.E.S.T

N.E.W.T

Design 1

Design 2

Design 3

Design 4

Design 5

Design 6

Design 7



Dewvaporation - Tower Assembly
Composite (Gauze
covered plastic)
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Dewvaporation tower – Design 1

� 20 ft2 effective total heat transfer area
� 12 evaporation and 12 dewformation sides
� REXAM water wettable sheet



Design 2 - Spacers

Spacer for the
Evaporation side

Spacer for the
Dewformation side



Dewvaporation tower – Design 2

�  Total area ~ 55 ft2

�  5 evaporation sides
�  4 dewformation sides
�  1 liquid heat exchanger
�  19 passes per side



Dewvaporation tower – Design 3
�  5 evaporation chambers
�  6 dewformation chambers
�  1 liquid heat exchanger
�  10 passes per side on 

 evaporation and 
 dewformation

�  Thin plastic (1 mil)
polypropylene

�   Foam spacers
�   Issues

�  Support



Dewvaporation tower – Design 4

�  Thin plastic (1 mil)
�   Reticulated foam
� Filled dew formation

side( no collapsing)
�   Issues

� Pressure drop increase
with wetting



Dewvaporation tower – Design 5

�  9 mil wall thickness
�  No horizontal/vertical

 spacers
�  Issues

� None



Dewvaporation tower – Design 6

�  Horizontal spacers on
 the evaporation
 side only



Dewvaporation Tower-Design 7
• 850 square Feet

• W.E.S.T. Twin Design

• 45 lb/hr

• 1ftx2ftx7ft

PROJECTED FACILITY

100,000 gallon/day Plant

Footprint:  780 square feet

                  20 feet high



Dewvaporation - Theory
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Dewvaporation - Theory
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Theory - Approximation
Assumption: Energy terms of liquid and air are small compared

to latent heat of vaporization
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Cross flow Reduction Effect
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�  Defined as a deposit that forms on solid
 surfaces by enhanced species concentration

�  Problem: Reduction of heat transfer coefficient

Scale



Preliminary Data - Scale

�  85% recovery
�  Solids were observed

 but did NOT adhere to
 the surface

�  No potential scaling
 problem



Data - Seawater Scaling

� 85% recovery
� Crystals formed at the

gas/liquid interface
� Crystals did NOT adhere

to the heat transfer wall

Heat
transfer
wall

Gas
boundary
layer Liquid

film

Bulk
Gas
Phase

Solids
form here

NOT
here



Preliminary Data based on Design 1
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Sea & Brackish Water Data:Design 2

Run # Distillate
(lb/hr)

Steam
(lb/hr) GOR

GOR (no
heat loss)

3.04 0.37729 8.96 17.74
2.22 0.29805c 7.69 19.34
2.60 0.27806* 9.46 28.25
1.98 0.37809* 5.29 13.34

* seawater with 42000 ppm



CMP Slurry Operational Data

Run # Feed*
(lb/hr)

Distillate
(lb/hr)

%
Reclaimed

f  Reuse**
Factor

8.0 3.301 41 20.0
8.0 3.632 45 14.1
6.0 3.303 55 20.8
4.0 3.524 88 7.3

* CMP Slurry 1 wt% solids
** Behaves Like Brackish Water but some gel in tower



CMP : PVA GEL SUPRESSION

COMPOSITE Gel Temp vs Slurry Conc with PVA
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Air flow correction - Design 7
� Improved design (N.E.W.T)

where cross flow occurs on
the dewformation side
instead of the evaporation
side

� Eliminates spacers on Dew
formation side



Economics (100,000 gallons per day)

1.39$85,900Waste Heat @
$1/1000 lb steam

2.67$97,400Desiccant
Enhanced

3.67$100,900Natural Gas @
$0.36/therm

Operating Cost
($/1000 gallons)

Capital Cost
($)

Design
Heat Source



Summary
�  No potential scaling
�  Operated at atmospheric pressure and below boiling

 point
�  No clogging of membranes (no additional cost for

 cleaning / replacing membranes)
� Demonstrated CMP water reclamation

• (at least 90% more with PVA)

� Potential Ultra-Pure Water Preparation
• (leaks 10 ppm less with manufactured units)

�  Potential Plating & Post etch  Clean Reclamation
• (like evaporation Pond Waters)
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