Water Purification by the **Dewvaporation Technique**

Dr. James R. Beckman Associate Professor

With

Bassem Hamieh, Eric Segura, Sharon Sparke and Mike Ybarra

ARIZONA STATE UNIVERSITY Department of Chemical and Materials Engineering

October 25, 2001

Overview

- **D** Motivation
- Status Quo Technology
 - ✓ Thermal processes
 - ✓ Membrane processes
- DEWVAP Research
 - ✓ Design
 - Theoretical development
 - Experimental work
- Experimental Observations
- Cost Summary

Motivation

- Decrease in fresh water supply
 Increase of water cost by decalination
- Increase of water cost by desalination due to high demand
- □ Seawater ,Brackish water, Evap Pond Waters
 - \checkmark Salinity is defined as g of salt per kg of solution
 - ✓ Seawater
 - Salinity of the world oceans varies from 30-50 g/kg
 - ✓ Brackish water
 - Waters with salinity of 5 g/kg or less
 - Evaporative Pond Waters
 - Saturated salt solutions of 300 g/kg crystallized

Desalination Plant-General

Bakish, Robert. <u>Practice of Desalination</u>. New Jersey, 1973

Background - MED

GOR = **0.8***Number of Effects

Spiegler, K.S. and Laird, A.D. K. <u>Principles of Desalination: Part A 2nd ed.</u> New York, 1980

Background - MSF

GOR values range from 4-12

Howe, Everett D. Fundamentals of Water Desalination. New York, 1974

Background - RO

Spiegler, K.S. and Laird, A.D. K. <u>Principles of Desalination: Part B 2nd ed.</u> New York, 1980

Dewvaporation - Theory

Dewvaporation at ASU

- □ Uses air as a carrier gas in a contact tower
- Operates at atmospheric pressure and below boiling point
- □ Air Fan and Feed Pump
- □ Towers are composed of
 - Polypropylene and nylon plastic materials
 - evaporation and dewformation side separated by thin inexpensive non-corrosive plastic heat transfer walls

Research Objectives at ASU

D Objective I

- ✓ Minimum Gamma
- Design a tower for the Dewvaporation technique
- Objective II
 - Develop a mathematical model for the Dewvaporation
 - \checkmark Develop an approximate solution of the theory
- Objective III
 - ✓ Scaling phenomena
 - ✓ Different runs on few of the potential designs

Surface wetting

□ Minimum gamma (lb of feed liquid/hr. /ft of width) Without With Percent Coverage gauze gauze* REXAM ~1 12 Polypropylene >12 ~1 Polypropylene >12~1 twin wall

•Nylon

Plastic Design Choices

Dewvaporation - Tower Assembly

20 ft² effective total heat transfer area
 12 evaporation and 12 dewformation sides
 REXAM water wettable sheet

Design 2 - Spacers

Spacer for the Evaporation side

Spacer for the Dewformation side

- \Box Total area ~ 55 ft²
- □ 5 evaporation sides
- □ 4 dewformation sides
- □ 1 liquid heat exchanger
- □ 19 passes per side

- 5 evaporation chambers
 6 dewformation chambers
 1 liquid heat exchanger
 10 passes per side on evaporation and dewformation
- Thin plastic (1 mil) polypropylene
- □ Foam spacers
- □ Issues
 - ✓ Support

- \Box Thin plastic (1 mil)
- Reticulated foam
- Filled dew formation side(no collapsing)
- □ Issues
 - Pressure drop increase with wetting

□ 9 mil wall thickness
 □ No horizontal/vertical spacers
 □ Issues

 ✓ None

 Horizontal spacers on the evaporation side only

Dewvaporation Tower-Design 7

- 850 square Feet
- W.E.S.T. Twin Design
- 45 lb/hr
- 1ftx2ftx7ft

PROJECTED FACILITY 100,000 gallon/day Plant Footprint: 780 square feet 20 feet high

Dewvaporation - Theory

Dewvaporation - Theory

Overall Heat Transfer Coefficient

Theory - Approximation

Assumption: Energy terms of liquid and air are small compared to latent heat of vaporization

$$\frac{P_{f} \cdot f = \left(\frac{\lambda}{B \cdot R \cdot T}\right)^{2} \cdot \left(\frac{h_{g}}{c_{p}}\right) \cdot \left(\frac{V_{eh}}{2 + V_{eh}}\right) \cdot F}{\left(\frac{1 + F_{RH}}{2 + F_{RH}} + F_{g} + F_{RH} \cdot F_{g} \cdot \left(\frac{6 + 3 \cdot V_{eh}}{3 + 2 \cdot V_{eh}}\right)\right)}{\left(\frac{1}{(3 + 2 \cdot V_{eh})P_{f} \cdot f}} = \left[\left(\frac{R}{h_{g}}\right) \cdot \left(\frac{B \cdot R \cdot T}{\lambda}\right)^{2} \cdot \left(\frac{c_{p}}{R}\right)\right] \cdot \left(\frac{2 + V_{eh}}{3 \cdot V_{eh} + 2 \cdot V_{eh}^{2}}\right) + \frac{B^{2} \cdot R}{6} \cdot \sum \frac{k}{t}$$

Cross flow Reduction Effect

 Defined as a deposit that forms on solid surfaces by enhanced species concentration
 Problem: Reduction of heat transfer coefficient

Preliminary Data - Scale

85% recovery
 Solids were observed
 but did NOT adhere to
 the surface
 No potential scaling
 problem

Data - Seawater Scaling

Preliminary Data based on Design 1

Sea & Brackish Water Data:Design 2

Run #	Distillate (lb/hr)	Steam (lb/hr)	GOR	GOR (no heat loss)
729	3.04	0.37	8.96	17.74
805c	2.22	0.29	7.69	19.34
806*	2.60	0.27	9.46	28.25
809*	1.98	0.37	5.29	13.34

* seawater with 42000 ppm

CMP Slurry Operational Data

Run #	Feed* (lb/hr)	Distillate (lb/hr)	% Reclaimed	f Reuse** Factor
1	8.0	3.30	41	20.0
2	8.0	3.63	45	14.1
3	6.0	3.30	55	20.8
4	4.0	3.52	88	7.3

* CMP Slurry 1 wt% solids** Behaves Like Brackish Water but some gel in tower

CMP : PVA GEL SUPRESSION

PVA will Prevent Gel Formation in the Dewvaporation Towers

Air flow correction - Design 7

- Improved design (N.E.W.T) where cross flow occurs on the dewformation side instead of the evaporation side
- Eliminates spacers on Dew formation side

Economics (100,000 gallons per day)

Design	Capital Cost	Operating Cost	
Heat Source	(\$)	(\$/1000 gallons)	
Natural Gas @ \$0.36/therm	\$100,900	3.67	
Desiccant Enhanced	\$97,400	2.67	
Waste Heat @ \$1/1000 lb steam	\$85,900	1.39	

Summary

- ✓ No potential scaling
- Operated at atmospheric pressure and below boiling point
- No clogging of membranes (no additional cost for cleaning / replacing membranes)
- ✓ Demonstrated CMP water reclamation
 - (at least 90% more with PVA)
- ✓ Potential Ultra-Pure Water Preparation
 - (leaks 10 ppm less with manufactured units)
- Potential Plating & Post etch Clean Reclamation
 - (like evaporation Pond Waters)

Acknowledgements

 United States Department of Interior, Bureau of Reclamation (Brackish & Sea Water)
 Salt River Project(Evap Ponds Crystallizer)