Ozonolysis of Organic Photoresist Direct or Indirect? Fundamental Mechanisms

Environmentally Benign Semiconductor Manufacturing Research Center

October 18, 2001

John DeGenova University of Arizona-Tucson

Boundary Conditions:

$$\tau_{yx} = -\mu \frac{\delta v_x}{\delta y}$$

(a) x = 0; $v_x = U_{\infty}$; for all y > 0(a) y = 0; $v_x = v_y = 0$; no slip condition (a) $y = \infty$; $v_x = U_{\infty}$, $v_y = 0$; a flat plate scenario

For Ultrapure Water, the Schmidt number, $Sc \cong 1000 >> 1$.

Mass Transfer Equations

Continuity Equation:

$$\frac{\delta v_x}{\delta x} + \frac{\delta v_y}{\delta y} = 0$$

Conservation of Momentum:

X momentum;

$$\rho\left[\frac{\delta v_x}{\delta t} + v_x \frac{\delta v_x}{\delta x} + v_y \frac{\delta v_x}{\delta y}\right] = -\frac{dP}{dx} + \mu\left[\frac{\delta^2 v_x}{\delta x^2} + \frac{\delta^2 v_x}{\delta y^2}\right] + \rho g$$

Conservation of Mass:

$$\frac{\delta C_{O_3}}{\delta t} + V_x \frac{\delta C_{O_3}}{\delta x} + V_y \frac{\delta C_{O_3}}{\delta y} = D_{O_3/H_2O} \left[\frac{\delta^2 C_{O_3}}{\delta x^2} + \frac{\delta^2 C_{O_3}}{\delta y^2} \right]$$

3

These equations can be solved for the Flux of Ozone through the boundary layer, by determining the concentration boundary layer thickness δ_c . This can be determined from a scale analysis relative to the momentum boundary layer thickness δ_m .

Combining the equation of motion with the continuity equation;

setting $\eta = y(U_{\infty}/\mu x)^{1/2} = 5$

using a boundary layer velocity of $v_{bl} = 0.99 U_{\infty}$

$$\frac{\delta_{\rm m}}{\rm x} = \frac{5}{(\rm Re)^{1/2}}$$

For steady state conditions, w/ an incompressible fluid and a steady stream, the x momentum equation can also be simplified to;

$$v_x \frac{\delta v_x}{\delta x} + v_y \frac{\delta v_x}{\delta y} = v \frac{\delta^2 v_x}{\delta y^2}$$

Combining this Equation of Motion with the Continuity Equation, for $y \ll \delta_m$, using the combination of variables technique, these equations can be solved to yield;

$$v_x \cong \frac{U_{\infty} y}{\delta_m}$$

 $v_y \cong \frac{v y^2}{\delta_m^3}$ Very near the plate.

The Conservation of Mass equation simplifies to;

$$\mathbf{v}_{\mathbf{x}} \frac{\delta \mathbf{C}_{\mathbf{O}_{3}}}{\delta \mathbf{x}} + \mathbf{v}_{\mathbf{y}} \frac{\delta \mathbf{C}_{\mathbf{O}_{3}}}{\delta \mathbf{y}} = \boldsymbol{D}_{\mathbf{O}_{3}}/\mathbf{H}_{2}\mathbf{O} \ \frac{\delta^{2} \mathbf{C}_{\mathbf{O}_{3}}}{\delta \mathbf{y}^{2}}$$

The concentration boundary layer thickness, δ_c , can be estimated from a scale analysis with the momentum boundary layer thickness, δ_m . This leads to;

$$\delta_{c} = \frac{\delta_{m}}{(Sc)^{1/3}}$$
$$\frac{\delta_{c}}{X} = \frac{1}{(Re)^{1/2} (Sc)^{1/3}}$$

Ozone Flux:
$$N_{O_3} = -\frac{D_{O_3/H_2O}}{\delta_c} C_{O_3}$$

Ozone/Water Chemistry

 $O_{3} + H_{2}O \xleftarrow{\text{High pH}} O_{2} + 2OH^{*} \text{ pH controlled}$ $O_{3} + OH^{*} \xleftarrow{} O_{2} + HO_{2}^{*}$ $O_{3} + HO_{2}^{*} \xleftarrow{} OH^{-} + 2O_{2}$ $O_{3} + OH^{-} \xleftarrow{} HO_{2}^{-} + O_{2}$ $O_{3} + HO_{2}^{-} \xleftarrow{} OH^{*} + ^{*}O_{2}^{-} + O_{2}$ $O_{3} + ^{*}O_{2}^{-} \xleftarrow{} OH^{*} + ^{*}O_{2}^{-} + O_{2}$ $O_{3} + ^{*}O_{2}^{-} \xleftarrow{} OH^{-} + OH^{*} + O_{2}$

 $\mathbf{OH^*, HO_2^*, *O_2^-, *O_3^-, O_3 + CH_n \longrightarrow CH_m + CO_2 + H_2O}$

Published data indicates oxidation of 10 - 25% of C bonds in PR. Industry adds radical scavengers to suppress radical reactions. Radicals are superior oxidizing agents relative to ozone. O₃ will not attack C--C single bonds, radicals will. Can the radicals be used to oxidize the PR?

Plans:Selectively form radical at wafer surface, not in bulk sol'n.
Form high pH/OH environment on wafer surface,
Apply O3/UPW at low pH with acid prefeed,
Generate radicals near organics in boundary layer.
Model mass transfer/kinetics.

Experimental Setup

Quartz Tank Reactor

										UPW									
	Wafer Pretreatment									Pretreatment			Treatments						
	Broad	185 nm	2.38% TMAH Soak	28% NH4OH Soak	10% NaOH Soak	1% NaOH Soak	10% H2O2 Soak	100% Acetic Acid	12% Acetic Acid	рН 2-3 w/	рН 10-11 w/	28% H2O2 1mL/min	Quiescent O3/UPW	O3/UPW Sprayed Onto Dry	O3/UPW Flowing	03	UV-UPW O3	UV-H2O	Stir
#	UV	UV	30 min	30 min	1 sec	30 min	30 min	1 sec	30 min	H2SO4	NH4OH	to 1L/min	Bath	Wafer	(1 L/min)	(mg/L)	(1L/min)	(1L/min)	Bar
1																8.1			
2																0.1			
4																12.1			7
5																12.1			7
6																12.1			7
7																12.1			7
8																12.1			7
9																16.4			7
10																16.4			7
11																0.0			
12																16.4			7
13																8.2			7
14																			7
16																16.4			7
17																16.8			7
18																9.2			7
19																0.0			0
20																8.1			- 1
21																8.1			7
22																1.1			
23																0.9			
24																			7
25																12.2			7
26																3.9			
27																3.4			
28																2.8			
29																2.2			7
30																5.1			
31																8.2			
32																12.2			
24																12.2			
34																12.2			
36																12.2			
37																12.2			
38																12.2			
39																12.2		10	
40																12.2			
					-														

DUV PR Removal Rates Initial Thickness vs Time

DUV PR Removal Rates Final Thickness vs O₃ Concretion

DUV PR Removal Rates Removal Rate vs. Initial Thickness

Spray Tank Set UP Sprayer Wafer at 45' Angle PR Bubble Forming Water Level

Wet Wafer after processing Side View

Dry Wafer after processing

Expanded Area

Experimental Setup

Bubble Formation PR Oxidation

Top of Wafer

Bubble location

Expanded Bubble Area

Broad UV, 2.38% NH4OH, O3/UPW

Ozone attack on PHS Criegee Intermediate Formation

Ozone attack on PHS: Ketone, Anhydride, Peroxides

Hydroxyl Radical Attack; Carboxylic Acid Formation

Carboxylic Acid

Control Wafer

UPW/O₃ Only

UV Wafer Pretreatment with O₃/UPW

Acetic Acid Pretreatment, UPW/O₃

NH₄OH Pretreatment, UPW/O₃

UV with H₂O Only

Future Research Plans

- Fluoresce OH* radicals with Thiamine, measure with spectrophotometer.
- Follow oxidation reaction with time using FTIR to track changes.
- Coat Quartz wafers with DUV Photoresist, direct UV light thru quartz to underside of Photoresist.
- Quantify bubble effect through surface image analysis.
- Quantify oxidation via radical/ozone mechanism.

Acknowledgements

Professor Farhang Shadman

EBSM Students

Pall Filter Corporation

Aquafine

Sievers