

Integrated ESH Assessment: Cu CVD Unit Process

Gary W. Rubloff and Soon Cho

Department of Materials and Nuclear Engineering and Institute for Systems Research University of Maryland

CEBSM TeleSeminar Oct. 4, 2001

Scope and Strategy

Multilevel modeling & simulation incorporating dynamics & stochastics

Optimize ESH within performance and cost requirements of the industry

• ESH impact metrics exist within larger context of product performance and manufacturing metrics

Technology Performance	Speed, power, density, yield, reliability	Non-negotiable requirement #1 priority "Hard" constraint	
Manufacturing Productivity	Cost-of-ownership, throughput, cycle time, overall equipment efficiency	Primary productivity optimization #2 priority	
ESH Impact	Materials usage & exposure, emissions & waste, water, energy	Highly desirable, but #3 priority	

- Seek common methodology for assessing and optimizing performance, manufacturing, and ESH metrics
 - Respect product performance requirements
 - Develop ESH improvements which minimize cost impact and may improve manufacturing productivity ("dual-use")
 - Stimulate innovation through efforts to co-optimize manufacturing and ESH metrics

Dynamic Simulation

Dynamic Simulator for Cu CVD Process

Components of the Dynamic Simulator for Cu CVD Process

PROCESS RECIPE

- Set Points: Total Press, Flow Rates of Precursor & Carrier Gas as a func of Process Timing
- Set Points: Process Temp
- Valves, MFCs' status as a func of Time

EQUIPMENT SIMULATOR

- Vacuum Chambers, Pumps, Valves, MFC's, Direct Liquid Injection System
- Process Pumping Stack:

o Roots Pump, Root-Blow Pump, Scrubber

- Conductances, Volumes, Press Control System
- Thruputs, Residence Time, Concentrations of Reactant, Carrier Gas, & Gaseous By-Products

○ → TOTAL & PARTIAL PRESSURES

- Substrate Heater Controller:
 - Heater & Wafer Absorptivities, Emissivities, Thermal Conductivities, Thermal Masses, Conduction, Radiation, Process-dependent Absorptivity & Emissivity, Heat Capacities,
 - o Temp Control System

PROCESS SIMULATOR

- CVD Reaction:
 - o Gas Phase Transport
 - transport rate coeff → Rate of Transport
 - o Surface Reaction Kinetics
 - surface rxn rate constant & coeff
 - activation energy
 - Arate of Surface Rxn
 - → EFFECTIVE RATE OF RXN

Components of the Dynamic Simulator for Cu CVD Process

Blanket Cu CVD Process

Dynamics of Manufacturing Metrics

CYCLE TIME

Composed of Raw Process Time & Overhead Time

<u>Raw Process Time</u>: Time during which actual film growth is occurring on the wafer

time for initial chamber filling to press set-pt

process time during which total & partial pressures have reached more or less steady-state

time for process gases pump-out at the end of the deposition process

<u>Overhead Time</u>: All other time during which there is no deposition on the wafer taking place

> initial "wafer-temp-stabilization time" inside the chamber before process gases are introduced

wafer loading & unloading Time

Desired <u>process</u> conditions for Short Cycle Time in general:

> High Press, High Temp, High Flow Rate → High Growth Rate → SHORT CYCLE TIME

In general, w/ all other variables fixed, HIGH REACTANT UTILIZATION means SHORT CYCLE TIME (but, not always)

Dynamics of Manufacturing & ESH Metrics

REACTANT UTILIZATION

- Precursor Mass Balance:
 - o # of moles of Precursor IN
 - o # of moles of Precursor OUT
 - # of moles of Precursor RXTED to produce product film on the wafer
 - o Precursor utilization = RXTED / IN (%)
- Desired process conditions for High Reactant Utilization in general:
 - O High Total Press, High Reactant Partial Press, High Temp, Low Flow Rate → Increased Residence Time, High Growth Rate → HIGH REACTANT UTILIZATION
- POWER & ENERGY
 - Sources of Energy Use:
 - <u>Substrate Heater</u>, Process Pumps, Process Chamber, Vaporizer & Gas Lines Heating, DLI System Pumps, Pre-Heated Precursor, Process & Equipment Control Units, PC's, etc.
 - Substrate Heater:
 - o Heater kept at high temp at all times → Significant portion of Energy lost during Overhead Times
 - Radiative Heat Loss ~ $(T_2)^4$
 - Conductive Heat Loss ~ $(T_2 T_1)$

Process Cycle Time

Reactant Utilization

Unit Process Optimization for Cycle Time & Reactant Utilization

Power & Energy

Temp-dependence of power input

- <u>Radiation</u> (~T⁴) and <u>conduction</u> (~∆T) are both important heat transfer channels in the process temperature regime for Cu CVD
- Maintaining higher temperature incurs higher power input
- →expect to prefer lower temperature to save energy

ENERGY OPTIMIZATION

- Temp-dependence of RxnRate is strong (exponential)
- ➔ higher temp causes shorter cycle time
- → shorter cycle time reduces energy cost
- Temperature dependence of energy usage is dominated by cycle time effect, not by power needs for maintaining wafer temperature in the process temperature regime for Cu CVD

Cu CVD Unit Process Optimization for Manufacturing & Environment

- MANUFACTURING METRICS
 - PROCESS CYCLE TIME
 - ENERGY EXPENDED PER UNIT THICKNESS
- ESH METRICS
 - REACTANT UTILIZATION EFFICIENCY
 - ENERGY EXPENDED PER UNIT THICKNESS
- PROCESS PARAMETERS
 - TEMPERATURE
 - PRESSURE
 - FLOW RATE
- CO-OPTIMIZATION OF MANUFACTURING & ESH METRICS
 - Energy (~Cycle Time, Throughput)
 - Mass balance = reactant utilization (no emissions/waste yet)

• CAN OPTIMIZE ESH METRICS WITHIN THE RANGE OF OPTIMAL MANUFACTURING PROCESS CONDITIONS

Future Plans

	Levels of ESH impact assessment and optimization		
Institution	Unit process	ESH infrastructure	Subfactory or process-group
UMd	<u>Cu fill</u> : plating vs. <u>CVD</u>	Water recycling (NSF educ suppl)	Cu fill technology roadmap
UCB	CMP process	CMP recycling (AMAT)	

Subfactory – Cu Fill Technology Roadmap

- NSF/SRC program in Operational Methods
 integrated modeling structures which couple process and operational models
- W plug example: unit process → cluster tool → subfactory (process-group)

Vision & Project Objectives

- DFE methodology for assessing & optimizing ESH impact metrics from the science plane to the factory level
 - Create models to assess ESH metrics at multiple levels
 - o Unit process, equipment & recipe, ESH infrastructure, subfactory
 - Compare ESH metrics for
 - o Conventional processes, with and without ESH infrastructure enhancements
 - o Alterative processes
 - Emphasize integrated assessment at higher levels and sensitivity analysis (systems picture)
- Systems engineering approach to achieve ESH benefits within the larger context of product performance and manufacturing metrics
 - Develop models which reveal metrics for performance & manufacturing as well as ESH
 - Co-optimize where possible; understand and prioritize tradeoffs elsewhere
- Systemic implementation of DFE across the Center's research portfolio
 - Apply DFE methodologies across portfolio of CEBSM projects, in collaboration with or driven by project participants
 - Reinforce learning and practice in research projects and educational programs

- Cu CVD unit process model established and used to assess ESH and manufacturing metrics
 - Mass balance limited to reactant utilization (not including emissions/waste)
 - Energy balance reveals non-intuitive results from competing factors
- Modeling approach provides platform for optimization and tradeoff analysis for multiple metrics
 - Additional metrics are important to incorporate
 - Film quality, emissions/waste, ...
- Methodology extendible
 - Other unit processes (Cu plating, CMP, ...)
 - Subfactory or process-group
 - ESH infrastructure