Gas phase surface preparation using ultraviolet-activated chlorine

Casey Finstad

finstad@u.arizona.edu

Department of Chemical and Environmental Engineering University of Arizona

Outline

- Motivation for Gas Phase Surface Preparation
 - Processing
 - Environmental Safety and Health (ESH)
- Background Information: UV/Cl₂
- Experimental Setup and Preliminary Results
- Future Plans
- Summary

Front End Cleaning Steps

Contaminant	Application	Liquid Phase	Gas Phase
Organics	• Post-RIE	 O₂ Ash 	• UV-O ₃
	• Ion Implant	 SPM (Piranha) 	• UV-Cl ₂
	Rework	 Ozonated Water 	• Moist O ₃
Oxide	• Pre-gate	• Dilute HF	• HF/vapor
Particles	 Post-CMP 	 APM (SC-1) + megasonics APM (SC-1) + brush scrubbing 	 Cryogenic Aerosol Laser
Metals	 Post-RIE 	 HPM (SC-2) + chelating agents 	 UV-O₃ UV-Cl₂

Motivation — Gas Phase Cleans

- No surface tension effects
 - Vapors penetrate sub-0.1 micron features (year 2005)
- No contamination from liquid bath
- Cluster tools
 - Wafer protected from atmosphere
 - Tool footprint in fab
 - Single wafer processing

Sources of Metallic Contamination

- Photoresist
- Reactive Ion Etching (RIE) (plasma etching)
- Oxygen Ashing
- Replace HPM (SC-2) with UV/Cl₂

SEM of 0.5 µm Feature After RIE

 $CD = 0.5 \ \mu m$ AR = 2.5 HDP Source, post-RIE, before ashing PR / TEOS

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

5

International Technology Roadmap for Semiconductors -- Metal Concentration Goals

Table 21 1999 Short Term Surface Preparation Technology Requirements

Year of Introduction	2001	2002 130 nm	2003	2004	2005 100 nm	
Front End of Line (A)						
Critical surface metals (at/cm ²)	≤6x10 ⁹	≤4.4x10 ⁹	≤3.4x10 ⁹	≤2.9x10 ⁹	≤2.5x10 ⁹	
Metal atoms per Si(100)	1:323,000	_		•	1:770,000	
Solutions Exist		Solutions Being Pursued		No Known Solution		

Critical Surface Metals: Fe^{1,4},Ca, Co, Cu^{1,3,4}, Cr⁵, K¹, Mo, Mn, Na¹, and Ni^{1,2,4}

1. Sugino, et al. 2. Courtney and Lamb 3.Chang, et al. 4. Lawing, et al. 5. Ma, et al.

Water Conservation

- Replacing 1/3 of wet cleans with dry cleans saves 216 million gallons of UPW or 324 million gallons of municipal water per year.
 - 1500 8"-wafers/day and 2000 gallons UPW per 8"-wafer
 - Wet cleans consume ~60% of UPW
 - 1.5 gallons of municipal water per
 1 gallon UPW
 - (Mendicino, et al, 1999)

/

Chemical Usage Reduction

- Chemicals, Materials, and Equipment Management --Reduced Consumption of Chemicals
 - Elimination of sulfuric acid by 2004
- Dry Cleans can reduce chemical consumption by 1000 times (Chang, et al, 1999).
- Reduced consumption = less waste disposal

Energy Conservation

- At 50 kWh/1000 gallons of UPW (Mendicino, et al, 1999), saving 216 million gallons of UPW conserves 10.8 million kWh of electricity.
- At \$0.045/kWh, this saves \$486,000/year
- Gains need to be measured against increased usage of vacuum pumps and heaters.

International Technology Roadmap for Semiconductors -- ESH Targets

- Workplace Protection -- Reduced Worker Exposure to Hazardous Fumes
 - "Isolate workers from chemicals and byproducts during operation" in 2001
 - "Reduced chemical usage in clean processes" by 2005
 - "Novel rinse/clean methods that reduce water and chemical usage" by 2011
- All fumes/vapors contained within vacuum chamber
- Thrust B, Wafer Cleaning Resource Consumption for Front End 0.13 μm CMOS Device Process Flow Project

Background Information—UV/Cl₂ Metal Removal

• Gas-phase photolysis (250-400 nm)

• Surface photolysis

Project Objectives—UV/Cl₂ Metal Removal

- Removal mechanism
 - Volatile products
 - "Lift-Off"
 - Metal-silicon-chlorine complex
- Reaction mechanism and products
 - Gas-phase or surface photolysis
 - Substrate and dopants
 - Oxide thickness
 - Contaminant and its concentration
 - Surface termination and other adsorbed species
- Monochromatic UV source

Thermochemistry

Reaction	ΔG_{rxn} (250°C)	P _{sub} (250°C)
1. Cu + Cl(g) \rightarrow CuCl	-219 kJ/mol	4x10 ⁻⁵ Torr
2. Cu + 2Cl(g) \rightarrow CuCl ₂	-322 kJ/mol	4x10 ⁻⁷ Torr
3. $CuCl_2 \rightarrow CuCl + \frac{1}{2} Cl_2(g)$	67.4 kJ/mol	
4. $Cu_2O + 2CI(g) \rightarrow 2CuCI + \frac{1}{2}O_2(g)$	g) -307 kJ/mol	4x10 ⁻⁵ Torr
5. CuO + Cl(g) \rightarrow CuCl + ½ O ₂ (g)	-112 kJ/mol	4x10 ⁻⁵ Torr

UV Reactor Schematics

Reactor

- 5 50 sccm Cl₂ flowrate
- Pressure (100 1000 mTorr)
- Temperature (21 300°C)
- 1000-Watt Xe arc lamp (~250 mW/cm² at sample)

Future Plans

- Install Monochromator
- Residual Gas Analyzer (RGA) to identify reaction products
- UV/O₃ for carbon removal

Integrated Processing Apparatus

Ultra High Vacuum Surface Analysis Chamber

Experimental Procedure

Pre-depositionClean sample in piranhaImmerse in 49% HFRepeat

Copper Deposition
1 % HF solution
5 ppm Cu (from CuSO₄•5H₂O)
2 to 5 minutes
Rinse and blow dry with N₂

Dice wafer into 3/4 x 3/4 inch pieces

Mount on sample holder

Preliminary Results, UV/Cl₂ Copper Removal

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

17

Preliminary Results, UV/Cl₂ Copper Removal

XPS spectra showing removal of copper at 200° C

- Experimental Conditions
 - Reactor pressure 300
 mTorr, 30 mTorr Cl₂

Results

- High temperature induced formation of CuCl
- Chemical shift stronger than expected
- Copper concentration decreased
- Unable to achieve total removal, even after two additional 1-hour cleans

Future Plans

- Calibrate reactor temperature
- Calibrate XPS for copper concentration
- Complete Removal of Copper
 - Higher Cl₂ concentration
 - Low temperatures (100°C or lower)
- Oxide wafers
- Integrated Processing
- Look for wavelength dependence
 - Removal and reaction mechanisms
 - Removal efficiency
 - Oxidation state of metal chloride surface species
- Verify conclusions with TXRF
- Other metals

Preliminary Results, Carbon Removal

XPS spectra showing decrease in carbon signal during copper removal experiment.

- Experimental Conditions
 - nominally 150°C
 - Reactor pressure 500
 mTorr, 147 mTorr Cl₂
 - 90 minute reaction time.
- Results
 - Carbon signal decreased.
 - Inconsistant carbon removal

Summary

- ITRS goals
 - Reduced consumption of Water, Energy, and Chemicals
 - Reduced worker exposure
- Processing benefits
 - Cluster Tools
 - Clean small features
- UV/Cl₂ Metal Removal
 - Nickel, copper, iron, sodium, potassium, calcium, chromium, and zinc
 - Reaction and removal mechanisms
 - Monochromatic light source
- Carbon Removal

Acknowledgements

- Anthony Muscat
- Bob Opila
- Scott Lawing, Rodel
- Nerissa Taylor, Novellus
- Adam Thorsness, Gerardo Montaño, Beverly Toperzer
- SRC Graduate Fellowship
- Air Products for donation of chlorine gas and regulator
- SRC/NSF Environmentally Benign Semiconductor Manufacturing Center
- NSF Career Award (DMR-9703237)