The Effect of Incidental Hafnium and Zirconium Contamination on MOS Processes

Bert Vermeire, Kenneth Delbridge, Viraj Pandit and Skip Parks

University of Arizona Tucson, AZ USA

Work funded by Center for Microcontamination Control

vermeire@ece.arizona.edu

Purpose

- <u>PROBLEM</u>: Trace amounts of Hafnium and Zirconium contamination have an unknown effect on thin oxide yield and reliability.
- <u>RELEVANT QUESTION</u>: Under which conditions does Hf or Zr contamination occur? What levels of Hf or Zr contamination are allowable?
- <u>ANSWER</u>: Hf or Zr contamination occurs under neutral or caustic conditions, but does not drastically affect GOI. 2

Why Hf & Zr?

- Need alternate materials with higher dielectric constants to replace SiO₂.

$$-K_{HfO2} = 30 \& K_{ZrO2} = 25 vs. K_{SiO2} = 3.9$$

• Thermally stable in direct contact with Si up to high temperatures.

- Hf forms the most stable oxide

 Pourbaix diagrams for Hf and Zr in aqueous system show that the oxides are stable over a large pH range.

TXRF measurements of Hf and Zr

- Hf is easily distinguished since its $L\alpha$ peak is not overlapping with a background element.
- The Zr Lα peak is very close to the silicon Kα peak. Its relative sensitivity is also poor. Therefore its detection limit is worse and quantification can be difficult.
- For the first experiments, the TXRF was operating at low intensity (the optical system needed alignment) and at low angle of incidence (software error) and without VPD-DSE. Detection limits have been improved by more than two order of magnitude.

TXRF Standards Verification

Hf adsorption vs. pH

Ionic strength = 0.01 M (NaCl) Detection Limit = $DL = 5 \times 10^{11}$ at. cm² Contamination = 1 ppm

Zr adsorption vs. pH

Ionic strength = 0.01 M (NaCl) Detection Limit = $1 \times 10^{13} \text{ at. cm}^2$ Contamination = 1 ppm

Hf and Zr adsorption

- Hf and Zr do not adsorb onto Si or SiO₂ under strongly acidic conditions.
- Hf and Zr adsorb readily onto Si and SiO₂ under near-neutral and caustic conditions.
- The adsorption is not readily reversible: Hf and Zr are not removed by a 10 min. DI water rinse from wafers that had Hf and Zr deposition in solution of pH 6. This is consistent with a particle contamination mechanism.

Deposition of Hf from APM (SC1) solutions and subsequent removal with a HF or HPM clean

Hf conc.	After APM	After HF	After HPM
100 ppb	1×10^{12}	< D. L.	< D. L.
1000 ppb	8×10^{12}	< D. L.	< D. L.

<u>APM:</u> NH₄OH : H₂O₂ : H₂O = 1:1:5 Temp. = 60 °C

 $\frac{\text{HPM:}}{\text{HC1}: \text{H}_2\text{O}_2: \text{H}_2\text{O} = 1:1:5}$ Temp. = 60 °C

<u>HF:</u> HF: $H_2O = 1:50$ Temp. = room temp.

Hf det. limit = 5 x 10^{11} at./cm²

Deposition of Hf from 5% HF

Gate oxide integrity (GOI) testing of Hf or Zr contaminated wafers

- Contamination was introduced using a contaminated APM (SC1) solution or contaminated rinse water.
- Two mix ratio's of APM were used: 1:1:5 and 1:10:50. Both solutions were at 60 °C. The pH of these solutions was 10.9 and 10.2 respectively.
- A third condition was a final rinse in contaminated rinse water.

GOI effect for 3 nm oxides with Hf from APM (SC1) or rinse water

12

GOI effect for 3 nm oxides with Zr from APM (SC1) or rinse water

Redistribution of Hf and Zr during oxidation

- Residual contamination in the oxide/at the silicon-SiO₂ surface can be measured after vapor phase decomposition (VPD).
- Residual Hf contamination after oxidation is found to account for all the Hf introduced prior to the oxidation (within experimental error).
- From this, it can be concluded that most (if not all) Hf contamination remains in the oxide or at the Si-SiO₂ surface.

TXRF scan of cross contamination monitor wafer

No Hf contamination was observed on a clean wafer inserted between two highly contaminated (> 10^{13} atoms/cm²) wafers.

Cross contamination during thermal processing

- Clean wafers were placed above and below a wafer with ZrO₂ and annealed at 950 °C for two hours in a nitrogen ambient. Polished side was facing the ZrO₂ wafer.
- Wafers were evaluated by AMD using TXRF (detection limit = 2 x 10¹¹ atoms/cm²) at five wafer positions.
- Two spots on the bottom wafer contained detectable quantities of Zr.

Conclusions for Hf and Zr contamination

- Hf & Zr contamination from APM (SC1) does not appear to be detrimental to the gate oxide until very high contamination levels are present.
- Near neutral solution conditions offer most potential for problems.
- Slight decomposition of the peroxide (starting at 100 ppb concentration of Hf or Zr) limits the APM bath lifetime.
- Acid cleans (dilute HF and HPM (SC2)) effectively remove contamination. Very little deposition from highly contaminated HF is observed.

Conclusions (continued)

- Contamination introduced by adsorption during a rinse is not removed by a subsequent clean rinse.
- Trace amounts of contamination present on a wafer prior to oxidation will largely remain in the oxide.
- Cross contamination has been observed during thermal treatment but requires further study.