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e |. Background on remote plasma processes
* |l. ASTRON plasma devices

* |lI. Applications
— CVD chamber clean
— Photoresist removal
— Plasma abatement
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Some Background on Plasma Sources

* |n semiconductor processing, plasmas are used to create
activated species to enable or accelerate chemical and

physical reactions.

* For ion driven processes, plasma is generated in process
chamber and exposed to substrate.

®* For processes driven by neutral reactive gases, plasma is
generated outside process chamber. Activated gas is flowed
to the process chamber to eliminate charged particles.
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Conventional Plasma Processing Chambers
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Why the Interest in Remote Plasma
sSources ?

* Chemical reactions of neutral species have certain
advantages

— avoids damage from charging or sputtering
— higher selectivity than plasma processes

* Highly reactive species can be produced and transported
- F,O,H,N, O,

* The use of a separate generator of reactive species allows
their production to be optimized, outside of the process
chamber
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Examples of Reactive Gas Generators
Manufactured by MKS

* Ozone

— dielectric barrier discharge

— used in SiO, deposition, wafer cleaning and wet bench
* Microwave

— microwave discharge in dielectric tubes

— stripping, wafer cleaning, annealing, chamber clean
e ASTRON

— RF toroidal plasma
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ASTRON (™) L OW-FIELD TOROIDAL
PLASMA SOURCE

* Delivers high flows of reactive
gases:
- atomic F, O, N, H

» Uses a plasma to activate gases

- ne=1013cm3
- Te=2-3eV

* Three functions in a single
package
- Control
- Power generation
- Plasma generation
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ASTRON PRINCIPLES OF OPERATION

= ferrite core

Gas input =P plasma volume

aluminum plasma block

dc break

=P Output

®* Currentin primary coil induces a current in the plasma (secondary) in
opposite direction (Faraday’s induction law)

* Ferrite core confines the electromagnetic field to improve magnetic
coupling

e DC break required to couple electromagnetic fields through conductor
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ASTRON Principles Of Operation (contd)

* The primary of the transformer is powered by an on-board 400 kHz
switching RF power supply.

* The electric fields within the plasma are kept low so that sputtering of
walls is avoided. Electric fields range from 4-8 v/icm.

* Energy efficiency from wall power to plasma is 85-90%.

* The aluminum plasma channel is water-cooled and allows very high
power density.
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ASTRON Product Line

Primary Flow Power
Applications Capabilities | Capability
ASTRON 2L CVD chamber 2 slm NF3 @10
5 kW
clean Torr
ASTRONI )
CVD chamber 2.5-3 sIm NF3 6.5-7 KW
clean @10 Torr
ASTRONe -
CVD chamber 4-8 slm NF3 8-10 kW
clean @10 Torr
Abatement
PFC removal 0.1-1 sIm CF4 5-10 kW

ASTRON

Xing Chen

Page 10




Typical Setup of Remote Plasma Device

1-5 dm gasflow
1-10 Torr pressure

0.5-5 Torr pressure

gaT Inlet

substrate

remote plasma source

transport region

gas baffle

process chamber

Typical transport time for reactive species 1-10 millisec
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Key issues in remote plasma applications

* Activation - activating or dissociating gases in a plasma
— appropriate wall materials in the plasma source
— enough power to do the job

* Transport - distributing reactant to process chamber

— The reactant species are relatively unstable (lifetimes of
msec’s ). Short residence time is key.

— Great attention must be paid to materials of construction.

®* Reaction - typically driven by thermal mechanisms.

— Reaction rates follow an exponential dependence on
substrate temperature

— Reaction rate are proportional to the partial pressure of
reactive gases
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Application: CVD Chamber Clean

* CVD chambers need to be cleaned periodically to prevent
chamber deposits from flaking and generating particles

* Clean time is a significant part of tool time, sometimes longer
than deposition time

* Due to use of aggressive chemistry, in situ clean causes
significant damage to chamber internal surfaces

* Remote plasma clean is preferred because
— reduced damage to chamber internals
— higher clean rates
— higher uniformity
— separates optimization processes for deposition and clean
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CVD Chamber Clean Techniqgues

In-Situ RF
NF, @ rf coil
C,F¢/O,

CF,/O,
cleaning gases

substrate
Atomic
Fluorine
ASTRON .
rf coil
— I NFJ/Ar [ E off
NF/Ar
cleaning gas substrate
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Materials etched at our labs with F

Sio,
SizN,
Si

W
WN
TiN
SiC
Ta
Ru
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Production Of Atomic Fluorine

* NF; CF,, C,F,, C;Fg are common sources of atomic fluorine

— When fluorocarbon is used, oxygen is added to form CO, CO2 and F

* Production efficiency of atomic fluorine can be measured by FTIR or by
comparing SiO, etch rate with the calculated maximum etch rate for given
source gas flow rate and pressure.

* Partial pressure of F is calculated using (Ref. Flamm, D.L. et. al., J. Appl.

Phys., 1981)
Reaction Probability: P=1.12 x 102 x e1892/T(K)
Etch Rate (um/min): R =6.14 x 1017 x Ng (cm=3) x T¥2(k) x e-1892/T(k)
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Production Efficiency Of Atomic Fluorine
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Atomic fluorine production efficiency is nearly independent of flow rates
of argon and pressure.
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Si10, etch rate vs. chamber pressure
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* Thereis an optimal pressure that corresponds to peak etch rate
— At low pressures atomic fluorine is lost due to vacuum pump

— At high pressures atomic fluorine is lost during transport due to
recombination
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Transport of Atomic Fluorine vs. Flow Tube
Materials and Temperature

Transport efficiency of atomic fluorine is measured from SiO, etch
rate with and without transport tubes

Transport of F vs. Flow

(2.2cm dia. 1-m tubes, Ar:NF3=1:1) Transport of F vs. temperature

(through 89-cm tubes)
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 Over 90% of F can be transported through a 1-m long tube
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Higher temperature improves transport efficiency
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Etching W with Atomic Fluorine

Unlike the case for SiO,, the published rate
constants for W-etching show that there can be
contributions from both F and F,

(D.E. Rosner & H.D. Allendorf, 1971)

For F: rate = 2.92e-14*sqrt(Tg(k))*n(F)*exp(-3900/T(k)) (um/min)

For F,. rate = 6.6e-15*sqrt(Tg(k))*n(F2)*exp(-6432/T(k)) (um/min)

Note that the etching for F, has a much higher activation energy than for F
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Etching W With Atomic and Molecular Fluorine
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* F etch dominates at low pressure
* F, etch becomes significant at high temperature and pressure
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ETCHING Si;N,
WITH ATOMIC FLUORINE
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e Data taken in ASTeX test chamber with ASTRON:;
e 0.3 sIm NF;/ 1.5 sIm Ar
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Application: Photoresist Etching

* Photoresist is used to create patterns on wafers

* Once patterns are created, photoresist must be removed and
the surface be cleaned.

* Atomic gases are preferred due to reduction of damage and
higher selectivity

* Typical process uses atomic oxygen
— Dopant gases are added to improve process
» add N, to increase dissociation
« add CF,, H,0 etc. to increase rates and enhance chemistry

* Typical etch rate a few um per minute at temperature of 200-
250 C.
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GENERATION OF ATOMIC OXYGEN

* Production of atomic oxygen is monitored by photoresist etch
* Higher flow rate of argon increases delivery of atomic oxygen

Effect of Oxygen Flow on Etch Rate
Ar=10 slm; N,=0.1x0,; Pump Speed Fixed
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Photoresist Removal Data from a Strip Chamber

Fixed Pumping Speed Fixed Pressure: 2 Torr
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800 sccm O, / 70 sccm N,
Argon flow rate as shown
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Application: PFC Abatement

 PFCs are used in semiconductor manufacturing for plasma etch
and CVD chamber clean

* SiO, Etch: CHF;, CF,, C,F;
* Chamber Clean: CF,, C,Fq, CiF5, NF,

 PFCs are greenhouse gases with long- term impact on global
climate

» Strong absorbers of infrared radiation (1000x higher than CO,)

 Long atmosphere life results in accumulation in atmosphere
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Plasma Abatement of PFCs

* Concept - Chemically destruct undesirable species in a plasma
reactor

— Add reactive gases, such as O,, H, and H,0O, to the chamber
exhaust so that the plasma converts the PFCs to harmless or
manageable ones.

e.q.
J Plasma
PFC + O2 — CO2 + F2

— Oxygen is needed to reduce free carbon to CO,. Chemical
balance dictates the ratio of O, to C to be 1 or greater.
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ABATEMENT OF CF,
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* Destruction efficiency of > 98% at CF, flow of 250 sccm
obtained with ASTRON.
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