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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Problem Statement: Dishing and Erosion
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Contributions

m Development of a semi-physical chip-scale pattern dependent model (with
calibration/characterization methodology) for copper CMP processes.

[0 Accounts for temporal evolution of bulk copper polishing and pattern
dependencies in bulk copper polishing

[ Accounts for temporal and pattern dependencies of dishing and erosion

[0 Framework is flexible and extendable to account for effects in all copper CMP
processes

m Development of a simulator (based on model equations) that can:
[0 Predict dishing and erosion across an entire chip, for a random layout

[1 Capture the temporal evolution of bulk copper polishing across an entire
chip, for a random layout

[1 Assess the effectiveness of dummyfication in minimizing
within-die non-uniformity

[I Identify bulk copper clearing problems in multi-level metallization schemes
[ Aid in the generation of smart interconnect design rules
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Outline

O Introduction to Copper CMP
[1 What is Chemical Mechanical Polishing?
[1 Copper CMP Process

m Copper CMP Model Development
m Chip-Scale Simulation

m Conclusion and Future Work
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

What is Chemical Mechanical Polishing?

Carrier Slurry Feed
Wafe
é/ V/ Eluray
", ee
Hold Platen\
Polishing Pa
laten
(a) Side View (b) Top View
m Slurry :

« An abrasive held in chemical solution
« A chemical solution with no abrasives

m Pads:
« Porous pad transports slurry and supplies mechanical energy to surface

m Material removed by a combination of
« Mechanical action -- relative movement and pressure necessary

« Chemical action -- slurry solution enhances or inhibits material removal
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

[ ]

Copper Damascene Process

Copper

Barrier
Layer

Dielectric
SizNy4

Si
Substrate

Deposit dielectric

Deposit silicon nitride (to act as etch
stop), and deposit dielectric on top of
the nitride

Etch the dielectric to form trenches for
the copper interconnects

Deposit a barrier layer to act as an
adhesive and a diffusion barrier

Deposit a thin seed copper film by PVD,
followed by a thicker copper film by
electroplating.

Use CMP to clear copper overburden
and barrier layer between trenches
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Copper CMP Process: Single-Step vs Multi-Step

Plated Cu Wafer Plated Cu Wafer Plated Cu Wafer
Pad End Pad 1 End Pad 1
Slurry oint — | Slurry 1 point™ ™ Slurry 1
P,V Metoctor | PL V1 detector | P3, V3

oy Bulk Cu Bulk Cu

Polished Wafer cleared “planarized”

pad2 End Pad 1
qu \yz point — ™ Slurry 1
! é detector P4, V4
: Bulk Cu
Polished Wafer cleared l
Pad 2
Slurry 2
T ——————————————————— P5, V5
m Reduced dishing and erosion +

Polished Wafer
m Higher throughput attained !
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Copper CMP Process (cont.)
Multi-Step Copper CMP

Damascene Process

Copper

Barrier
Layer

Dielectric
SizNy

Si
Substrate

Process
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Wafer
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Step 1 Process: Endpointing
High DF, High with iScan:
Speed, Slurry 1 Targeted Cu

y Thickness
Step 2 Process: Clearing
Low DF, Moderate ~e—FEndpointing
Speed, Slurry 1 plus Fixed

y Time Polish
Step 3 Process: Fixed
Moderate DF, Time
Moderate/High Polish
Speed, Slurry 2

Y

Cleaning
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Outline

m Introduction to Copper CMP

[1 Copper CMP Model Development
[I Integrated Copper CMP Characterization and Modeling Methodology
Intrinsic Stages in Copper CMP
CMP Test Mask Design
Metrology
Dishing and Erosion Dependencies
Density-Step-Height Model
Integrated Contact Mechanics and Density-Step-Height Model

O O0Oo00o0on

m Chip-Scale Simulation

m Conclusion and Future Work
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Integrated Copper CMP Characterization and
Modeling Methodology

CMP Test Wafers

i‘:'y-”l
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iR ! Measure Dishing, Erosion
I/ /V and Copper thickness
Nammsy/ B

\\ /V
CMP Process — . Model Parameter
Fixed pad, slurry ' Product Chip Layout Extraction

-Fixed polish process
settings: pressure,
speed, etc.

—-_--
[ 4 1 | 0 ]|

Y-

Calibrated Pattern
Dependent Copper
CMP Model

-Variable polish times.

Chip-Level
Simulation

-Prediction of dishing and erosion.
-Assessing the effectiveness of dummyfication
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

The Three Intrinsic Stages in Copper CMP

I

bulk
Stage 1 copper

! . removal
w |

Stage 2 Dbarrier
removal

| over-
' polish
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Oxide U
Erosion  Zps'i  reer et

Cu
Dishing
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

CMP Test Mask Design

m Single level mask with electrically
testable and physically testable
structures.

m Layout Factors: Line width and
line space combinations

I Minimum feature size: 0.25 um
[1 Density range: 10 % to 90 %
1 Pitch range: 0.5 pum to 200 pm

m Structures:
[ Arrays and isolated lines
[1 Slotting

m Other variants of this mask have

been designed and used in this
Mask 931 - Version 1.2 work
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Metrology

m Copper Thickness Measurement
[1 Blanket wafers: Four Point Probe (from Prometrix)

] Patterned wafers: MetaPULSE 200x (from Rudolph) or Impulse 300 (from
Philips Analytical)
« MetaPULSE: spot size of 20 um and measurement accuracy of 300 A for
thick copper films

[ Patterned Wafers: Electrical measurements (can only be done after bulk copper
and unwanted barrier film are completely cleared from wafer)

m Surface Profile Measurement

[1 HRP (tip size of about 0.1 pm) and Veeco Profiler with AFM capabilities (tip size
of less than or equal to 0.1 um)

- Levelling a surface profile can be very challenging

m Dielectric Thickness Measurement
[1 UV-1280 (From KLA Tencor) - spot size of 5 um at high magnification

[ F5 (From KLA Tencor) - spot size of less than or equal to 5 um at high
magnification. Measurement accuracy of 50 - 100 A on oxide
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Metrology: Copper Thickness Measurement
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Metrology: Dishing and Erosion Measurements
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Limitations of Measurement Technigue
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Measured Dishing Dependencies
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m Dishing depends on line width and line space (for conventional copper
CMP processes).

m Dishing depends on polish time. It reaches steady state quickly for fine
features.

m Dishing depends on process settings and consumable set.
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Chip-Scale

Modeling of

Pattern

Dependencies in Copper CMP Processes

Measured Erosion Dependencies
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m Erosion depends on pattern density
and line space.
_ 1500, m Erosion depends on polish time
(overpolish time).
m Erosion depends on process settings
. and consumable set.
00 2‘0 4‘0 . : E;O 86 120
Line Space (um)
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Density-Step-Height Model: Pattern Density Effect

Low pattern High pattern
density density |
Pre - CMP Copper Thickness Evolution
during CMP

m Basic idea: up-area removal rate depends on up-area fraction (pattern
density).

m The effective density at each point depends on nearby topography and the
layout density at that point.

m The effective density can be determined by averaging local layout densities
over a planarization length (L).
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Pattern Density Effect (cont).

3.

= : ' m =

B B . : e g
Mask 931- version 1.2 Electroplated effective pattern density
assuming a planarization length of
2.76 mm

m Use circular weighted window (based on deformation of an elastic
material) to calculate average or effective density for each point on die.

m The polish rate at each point is inversely proportional to the effective
density at that point.
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Step Height Effect

TR
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v vy

m Incompressible Pad Model : up-area 001 I
removal rate determined by density. No 5000] 300 um square
down-area removal (original MIT 4500( trench structure

dielectric density Model)

4000

3500

m Compressible Pad Model : up-area and
down-area removal rates are
proportional to step height (Burke, 25000
Tseng, Grillaert, MIT CMP Team) 2000

3000

Step Height (A)

L. . . 1500
m Transition from incompressible to R A "
compressible pad model occurs at a o a
critical helght (Grillaert et al., MIT CMP % 10 20 30 40 50 60 70 8
Team) Polish Time (s)
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Density-Step-Height-Model: Main Idea

m Removal rate is a function of pressure, relative speed, and consumable set.

I Find the functional dependence of removal rate on pressure for given speed,
and consumable set. (OR)

[1 More generally, find the functional dependence of removal rate on pressure and
speed, for given consumable set.

m Effective polish pressure is a function of step height, pattern density and
the applied pressure

[J According to Hooke’s law, the effective polish pressure is linearly dependent
on step height

m Combine the removal rate versus pressure relationship with the pressure
versus step height (and density) relationship to get a removal rate versus
step height (and density) relationship.
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Density-Step-Height: Bulk Cu Removal Stage
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Density-Step-Height: Overpolish Stage
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Density-Step-Height Model Parameters

Intrinsic Stage One

Intrinsic Stage Two

Intrinsic Stage Three

Effective blanket copper

Effective blanket copper

Effective blanket copper

fcu removal rate Feu removal rate leu removal rate
Ly Planarization length bl Effective blanket barrier | roy Effective blanket dielectric
removal rate removal rate
Hex Critical Step Height b Planarization length i Planarization length
drnax Maximum dishing hax Maximum dishing
)] Edge rounding factor U Edge rounding factor

m H,. An analytical function of line width and line space (or pattern density).

m d,,,: An analytical function of line width and line space (or pattern density)

m : An analytical function of line space

m /., Observed to be time dependent

T. Tugbawa
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Model Parameter Extraction Methodology: Stage 1

Empirical function expressing amount of
copper removed on blanket wafer as|a
function of time

Blanket wafer data

_Arrgr?]%%g copper Minimize RMS error foy @1, 3, andt,
-polish times subject to constraints

Patterned waferdata__ ISHay
relevant?

- Copper thickness
removed

- Step height & reces

- X,y coordinates

lv2)

Minimize
RMS error
subject to

constraints

Intrinsic stag
one m_odel
equations

197

Electroplating
and layout details

- Copper thickness
deposited

- Electroplated line
widths and spaces

- Local electroplated
density matrix

Ly
Hex: A, a1, Bl
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Model Parameter Extraction Methodology: Stage 3

Extracted blanket

copper removal rate

(from stage one):
Iy 84, Ao, ANAT,

Model equations for
intrinsic stage two

Measured data: Minimize RMS

ast : error subject to -

- Dishing constrajints Layout details

- Erosion _ - Line widths

- Blanket dielectric - Line spaces
wafer data - Discretized local

-X,y coordinates of layout densities
measured dishing

and erosion sites
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Calibration Experiment: Three Step Cu CMP Process

Three step process experiment on Mirra

Down Speed Selectivity
Step #| Platen # Pad Slurry force (psi) (rpm) Cu:TaN:Oxide
1 1 Stacked EPC-5001 ) 63 249:4:1
2 2 Stacked EPC-5001 2 43 232:3:1
3 3 Stacked 10K-1 3 100 2.3:1:5

m Test Mask: MIT mask version 1.2

m Time split experiments in each step
[1 5 patterned copper wafers in step 1
[ 7 blanket copper wafers in step 1
[ 5 patterned copper wafers in step two (one polish time duplicated)
I 3 blanket copper, 3 blanket oxide, and 3 blanket TaN wafers in step 2
[1 4 patterned copper wafers in step 3
[1 3 blanket copper, 3 blanket TaN, 3 blanket oxide wafers in step 3
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Array and Field Sites used in Extraction
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SR 21

Array site numbers Field site numbers

m 24 array sites: all density and pitch structures

m 39 field sites: Used only in the extraction of step one model parameters
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Initial Copper Thickness Deposited (measured)

2 16
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148
1.3r
Lol 146
11 1 1 | | 1.44 1 1 1 1 1 | |
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m Significant long range thickness variation (global heights) across the die
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Chip-Scale

Modeling of Pattern

Dependencies

in Copper CMP Processes

Mode

Fits vs. Data: Stage 1
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88000’ 57500,
3 9
E 2500, A R Stepone 5 |*
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o 1000F - 38
g =43s ¢
£ 65001 £ 65001
<§EGOOO §

-0~ Dat;
6000 A Mié"a Fit
55001
50000 é 1‘0 £5 éo 25 55000 é 1‘0 1‘5 26 2‘5 3‘0 3‘5 40
Array site number Field site number
m Model does not fit the data well
reu1 (A/s) S O Density-step-height model

ay ay T L1 Hexi1 | Error neglects long range thickness
(A1s) | (A) (s) | (um) A) (A) variation (global heights)
2495 | 3987 | 16.4| 4893 negligiblé 817 introduced by electroplating
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Chip-Scale

Modeling of

Pattern Dependencies

in Copper CMP Processes
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Chip-Scale

Modeling of Pattern Dependencies in Co

pper CMP Processes

Model Fit vs. Experimental Data: Step 2 (edge

rounding included in equations)
2000 2000
-e— Data -0- Data
-0 Model Fit =¥ Model Fit

1600~ 1600 N
21200* 2:\1200*
> Step two ¢
g 800 pO“Sh é 800

time =
94 s X
400 400
0 o ¥ 0 ‘ ‘ ‘ ‘
15 20 25 0 5 10 15 20 25
Array site number Array structure number
m Model fits the data
d very well

e | oo | T2 | Lag ) % | 25| ] o global heigh

Ais) | (As) | (Als) | (um) & 0 global heights
BA) | B2 C S present in this
44 7.95 25.5 1596 159.3 0.467  0.468 N/A N/A 120 Step
44 2.36 7.58 2456 173.6 0.42F 0.331 4.03 4.19 73
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Chip-Scale

Modeling of

Pattern

Dependencies

in Copper

CMP Processes

Model Fit vs. Data: Ste

pD 2 (cont.)
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Model Fits vs. Data: Step Three (with edge rounding)

1000 w I 5 2200 \
-0- Data
ool -0 ModelFit ] 2000 | v Mo Fi ﬂ
1800t
600+
1600
< 400p 1 ) . <100t
2 Polish times
2 200 linstep  gwor
A | three = 1000}
B ‘r X8 20 S 800k
-200+
600+
~400, 5 10 15 20 25 400, 5 10 15 20
Array structure number Array structure number
m Model fits data very
e | too | ey | Lag dps (B) W aus | well to within
As) | Ws) | As) | M) [a ] a5 | B | G | ss |ETA|  Measurement error
137 | 452| 90| 3707| 548 089% 0014 NA NA 1370 O NO g|0b§| he'ights
90 | 200| 40| 4500| 31.0 0625 0014 341 573 126 present in this step

m Without edge rounding, the extracted blanket dielectric rate is too high
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Model Fits vs. Data: Step Three (cont.)
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Chip-Scale

Modeling of Pattern

Dependencies

in Copper

CMP Processes

Verification of Extractio
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m Extraction errors in step one lead to inaccurate overpolish time
simulation, and inaccurate erosion simulation
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Density-Step-Height Model: Limitations

Bottom-up Fill Electroplating Technique

m Plating introduces initial global
heights
Metal 2
_ m Excessive overpolish might cause
Oxide global heights

M m Dishing and erosion on metal level
Oxide Metal 1

Copper one can lead to global heights on
higher metal levels

Multi Level
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Issue: Global Heights (Hills and Valleys)

m ECD causes large initial global heights.

m As we polish, the global heights change, and bring about
pressure redistribution.

m EXxcessive overpolish could lead to large global heights.

m Dishing and erosion on metal level one, cause global heights on
metal level two.

m The issue of global heights, raises two questions:
O Is there contact on up-areas?
O If there is, what is the degree of contact?

m Global heights need to be taken into account for accurate dishing
and erosion prediction.
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Outline

m Introduction to Copper CMP

[1 Copper CMP Model Development
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m Chip-Scale Simulation
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Integrated Contact Mechanics and
Density-Step-Height Model

Long-range thickniwi\fferencd_ocal up-area Local down-area Local step height

Bottom-up fill electroplated profile for several arrays of lines

e S

Envelop function for the electroplated profile shown in electroplated profile above
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Integrated Model (cont.)

S

Reference plane

e
SO

Wafer (envelope)

Po(X,Y)
wi(X,y) = kHEL/(x "
P _ |:P1 We - Wb
E 0 We>Wb

[]
[0€ dn

pp: Perturbation pad pressure

wp,: Perturbation pad displacement
W,: Pertubation wafer displacement
P,: Applied pressure

P.: Envelope pressure (wafer
pressure)

k.. Contact factor (units of 1/kPa)
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Initial Envelope and Envelope Pressure

2 120
18 F100
S16 3 80
§1.4 % 5 ‘ur (N ik N ‘. L | 'Hl ‘ I
i $ W \\““ ik / “\"“'l | tulo b
<I5)0.8 ﬂé 20 ‘\“\\‘\\\\\\ Wi & I I
ll”hm
Y " ) ‘w //I’ ‘"N‘
100 100 I
80 , ‘ : 100 . 100
60 o @
40
40
y discretization 00 x discretization y discretization 00 x discretization
Initial Envelope Initial Envelope Pressure

m The long range thickness variation or global height is captured by the
envelope function

m The initial envelope pressure is not necessarily the applied pressure as
assumed by the density-step-height model
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Integrated Model (cont).

Compute the envelope

Y

1

P Pgs3 Pea Pes Apply contact mechanics
el Pgo — to compute envelope pressures [
Pei
: * _ Compute new
Use density-step-height model envelope
to compute the removal rates 1

Y

Compute amount removed
in up and down areas for
polish time of at.

* Set polish
time to:

Yes ~Is sum(at) = Total polish No t - Sum( 3t)
Done time t?
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Chip-Scale

Modeling of Pattern

Dependencies in Copper CMP Processes
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Dependencies in

Copper CMP Processes

Integrated Model Fits vs. Data: Step 1 Process (cont.)

14X 10* « 10
’ —— Data 1.4
=@ Model Fit: ICDSH —e— Data i
1.3F -¥ * Model Fit: DSH | 1.35 -@ - Model Fit: ICDSH
13 =¥ ' Model Fit: DSH B
:(\l 2 |- — —_
=1 < 1.25 7
=) . ~
g Polish E
£ L i - . 3 .
oll time In £
5 S 1.15
g step one =
o = -
% 1 58 S § 1.1
£ S 105
0.9F . S
£ 3 1
£ £
0.8 4 0.95
0.9
0.7 : : ‘
10 15 20 25 0.85 : ‘ ‘ L : i i
Array site number 0 5 10 15 20 25 30 35 40
Field site number
16X 10" x 10"
. I 1.5 T T
—6— Data —e— Data
- : Model Fit: ICDSH -m ' Model Fit: ICDSH
150 =¥+ Model Fit: DSH | 1.45¢ -¥ + Model Fit: DSH
— 1.4F 4
<i4af 8 <
=)
g § 1.35
IS B B - o
513 Polish § 12
5 . . b
2 time in stepg
g1.2f - _ S1.25
s one=64s &
= 2 1.2
é 1.1F . §
£
< <1.15
e i
1.1
0.9 L L L 1.05 I I I I I I I
0 0 15 20 25 0 5 10 15 20 25 30 35 40
Array site number Field site number
T. Tugbawa 46 SRC TeleSeminar



Chip-Scale

Modeling of Pattern

Dependencies

in

Copper

CMP

Processes

2000

400
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m Simulated overpolish times for ICDSH closer to actual overpolish times
[1 ISDSH simulated erosion closer to data than DSH simulated erosion
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Outline

m Introduction to Copper CMP

m Copper CMP Model Development

[ Chip-Scale Simulation

m Conclusion and Future Work
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Chip-Scale Modeling of Pattern Dependencies

Copper CMP Processes

Integrated Electroplating and CMP Chip-Scale

Simulations
Copper CMP Modeling Methodology

Electroplating/CMP
Test Wafers

-

P\

CMP Process Product Chip Layout

-Fixed pad, slurry

-Fixed polish process

settings: pressure, speed,
etc.

-Variable polish times.

Chip-Level
Simulation

- Prediction of bulk copper polish evolution
- Prediction of bulk copper clearing time
- Prediction of dishing and erosion

Measure Dishing,
Erosion and Copper
Thickness

Model Parameter

Extraction

¥

Calibrated Pattern
Dependent Copper CMP
Model

- Electroplating
Model Outputs

- Layout Extractor
Outputs
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Integrated Electroplating and CMP Chip-Scale
Simulations (cont.)

Electroplating Modeling Methodology

Measure Step Height,
Array Bulge/Recess and
Field Copper thickness

Electroplating/CMP
Test Wafers

'T'E:a

Product Chip Layout Model Parameter
Extraction
Electroplating Process %
-Fixed platin alibrated Pattern
procesg settl%gs

Dependent ECD Model

Chip-Level
Simulation

- Prediction of step height,
*h - Predicttion of local electroplated density
| gy -Prediction of copper thickness
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Accuracy of Simulator

m Three step copper CMP process performed on layout not used in copper
CMP model and copper electroplating model calibration.

m Use simulator to predict the dishing and erosion across the entire die, for
the new layout

m Compare predicted results to measured results, at specific points

on the die.

Step # Platen # Pad Slurry Dov(\glsfig)rce ?rzif)d
1 1 Stacked EPC-5001 5 63
2 2 Stacked EPC-5001 2 43
3 3 Stacked 10K-1 3 100
Wafer # Step one Step two Step three
Z-1 63 102 55
Z-2 63 117 0
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Chip-Scale Modeling of Pattern

Dependencies in Copper CMP Processes

Die Level Predicted Results: Dishing
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Die-Level Predicted Results: Erosion
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Predicted Results vs. Measured Data
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Predicted Results vs. Measured Data (cont).
L EE T T T ER
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Dishing after step two for wafer Z-2 Erosion after step two for wafer Z-2

m Predicted results follow trend in measured data reasonably well, and are
reasonably close to the measured data

m Simulator shows great promise for:
[ Predicting dishing and erosion on random layouts

[1 Assessing the effectiveness of dummyfills in minimizing
within-die non-uniformity

[1 Detect clearing problems in multi-level metallization schemes
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Defining Dishing in an array with Varying Line Space

0.05 0.05

Line space Increasing

f

ThhiniaiEkiE

Relative Height (um)
) | ) | )
N o [ © o
6] N (6] = a1
Relative Height (um)
) | ) | )
N o = © o
6] N a1 = a1

from 1 pm to 100 pm QNUWUU / U U
Line width = 20 pm | -l
-0.3 . -0.3F
0 160 260 360 460 560 660 700 0 160 260 360 460 560 660 700
Scan Length (um) Scan Length (um)
Polish time = 98 s (Just cleared bulk and barrier) Polish time = 114 s (overpolish)

m What is dishing when the line space in an array varies?

m Does it make sense to talk about dishing in such a case, or should we
now talk about the copper thickness loss in the trench?
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Chip-Scale Modeling of Pattern Dependencies in Copper CMP Processes

Conclusion and Future Work

m A chip-scale pattern dependent copper CMP model has been developed
m A comprehensive model calibration methodology has been developed

m A simulator (based on model equations) has been developed. It can be
used to:

I Predict dishing and erosion across an entire chip

[ Assess the effectiveness of dummification in minimizing
within-die non-uniformity

[1 Detect any bulk copper clearing problems in multi-level metallization schemes
[ Aid in developing smart interconnect design rules

m Future work needed includes:
[I Incorporate wafer level variation into the model
[I Incorporate process variation (day to day, lot to lot, etc.) into the model

[1 Study relationships between model parameters and process parameters (down
force, table speed, pad stiffness, slurry type, slurry flow rate, etc.)
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