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Cross Section of IC Chip
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e Modern IC’s use multiple levels of metal
iInterconnects to electrically connect transistors
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Interconnect Capacitance
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Lower Capacitance with Low-K Materials

Material Technique Trade Name Company k
SiO, CVD 4.0-4.3
F,SiOy CVD 3.4-4.1
HSQ Spin-on Flowable Oxide Dow Corning 2.9
Allied Signal
Nanoporous Si Spin-on Nanoglass Allied Signal 1.3-2.5
F-polyimide Spin-on 2.6-2.9
Poly(arylene) ether Spin-on FLARE Allied Signal 2.6-2.8
VELOX Schumacher
Parylene AF4 CVD Novellus 2.5
Watkins Johnson
Aromatic Spin-on SiLK Dow 2.65
hydrocarbon
PTFE Spin-on Speedfilm Gore 1.9
DVS-BCB Spin-on Dow 2.65
Hybrid SQ’s Spin-on MSQ Dow Corning <3.0
Amorphous FC, HFC CVvD FLAC, F-DLC, CFx IBM, NEC 1.9-3.3
Novellus, HP, TEL
Amorphous SiOCH CVD Corral Novellus 2.7
Amorphous SiOCH CVD Black Diamond Applied Materials 2.7
vacuum 1.0

Table courtesy of Professor Karen Gleason at MIT
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Low-K Material Issues

* Mechanical strength
 Dimensional stability
 Thermal stability

e Ease of pattern and etch
 Thermal conductivity

e CMP compatibility

* Moisture Absorption

e Complexity of integration
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Air-Gaps: Historical Perspective

e (Often referred to as dielectric voids and/or
“keyholes.”

Semiconductor industry has traditionally tried
to eliminate air-gaps: spin-on-glass,
dep-etch-dep, TEOS, HDP-CVD.

Difficult to integrate into process: cannot
control size and shape of air-gaps.

Potential reliability problems: electromigration,
poor thermal conductivity, trap particles.

Anecdotal accounts of capacitance decrease
due to unintentional air-gaps.
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Why Air-Gaps?

e Dielectric constant, K, approaching 1.

* Reduces dominating line to line
capacitance.

* Interlevel SiO, left intact.
e Simple integration.
e Compatible with scaling trends - air

gaps easier to form with higher aspect
ratios.

e (Good vehicle to study tradeoffs between
performance & reliability
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Environmental Impact

* No new materials or precursors
— SiH,, O,, Ar
— can use current toolsets (PECVD, HDP-CVD)
— do not need new etch or CMP processes

e Known environmental issues
— chamber clean
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e |deal Air-Gap Structures
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Vacuum

Dielectric
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K VS. Line Spacing
(Void Extension=0.0, Sidewall Thickness=0.0)
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Dependence of K 4 Air-Gap Shape
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HSPICE Ring Oscillator Delay:
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HSPICE Ring Oscillator Delay:
J Crosstalk Capacitance
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HSPICE Crosstalk Signal Integrity
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e Air-gap Processing and Integration
e Electrical Performance
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Air-Gap Formation

* Difference in view angle causes
“preadloafing” during SiO, deposition.

Air-gap

» Greater “breadloafing” === | arger air-gaps
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Deposition Topography

N
Isotropic Flux Isotropic Flux Directional Flux
High S, Low S, High S,

e Deposition topography depends on angular
distribution of incident flux and sticking coefficient
(S.) of reactive species
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| SiO, Chemical Vapor Deposition
(CVD) Technology
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Integration Issue: Air-Gap Extension

i sflsxss o TR

plasr ﬁsalaaa g uma 8004 15KU %30,888  Lem HD10

Line/Space = 0.3um/0.3um Line/Space = 0.4um/0.4um

CMP opens air-gap

) —
CMP
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Controlling Air-Gap Extension

Non-conformal deposition + HDP-CVD

Non-conformal deposition \/\\/

Narrow Wider
Space Space
e First Step: Non-conformal deposition to form initial
air-gap.

e Second Step: HDP-CVD to keep seam from forming,
limit extent of air-gap above metal lines, and provide
local planarization
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Profile After First Step

817796 BPS 1 9674-96  8/17/96 . BPS
ofile Evol . 4Bs str:d 1 Zpgy Profile Evol. 48s stir:f
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Line/Space = 0.3um/0.3um Line/Space = 0.4um/0.4um
e HDP-CVD: Modified recipe to produce non-conformal
deposition

— High Gas Flows
— Low Substrate Bias
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Profile After Second Step

i

_ pea7 438,048
Line/Space = 0.3um/0.3um Line/Space = 0.4um/0.4um
e HDP-CVD: optimized to prevent seam from forming,

limit extent of void above metal lines, and provide
local planarization
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Experimental Capacitance Data
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e ~ 331040 % capacitance reduction from HDP oxide
gapfill for 0.3um lines/spaces
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Profile and Capacitance Modeling of
Experimental Results

ST

6061 15KV X48,080 106ny W0z Deposition

Experimental Profile simulated using
SPEEDIE

Capacitance

calculation using

TMA Raphael
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Capacitance vs. Feature Size
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e K.« Of air-gap is geometry dependent
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Integration Issue: Via Reliability
Via etch

into @ir-gap Via metal fills air-gap
Litho
mis-alignm_e)nt

e First Step: Conformal deposition to control sidewall passivation
thickness.

Secaond Stan: Nan-caonformal denocition to form air-aan
\WwINIT INA u!.LILI TN\ T T ITNT T T ICAD UUFUUILIUI.I L\ TNJITTIT CATT ur.l
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PETEOS and PESILOX to Control
Air-Gap Sidewall Thickness

AG4: 3kA PETEOS

NSF/SRC Englneermg Research Center for Envzronmentally Benign Semiconductor Manufacturing
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Extracted Capacitance vs. Feature Size
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e (Capacitance increases with sidewall thickness.

* |ncrease in via misalignment margin must be
balanced against capacitance increase.
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e Electrical and Thermal Reliability
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Electrical Reliability: Breakdown Voltage

Paschen’s Curves*
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* | eakage data indicates no breakdown well above operating

voltage.

*Raizer, Yuri P., “Gas Discharge Physics”, Springer-Verlag, 1997
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Simulated Joule Heating and

Thermal Reliability
Material AT above Tsubstrate .
SiO, Air-gap
Homogeneous
SO, 49K
Homogeneous § Al
low-K 76.7K
Air-gaps w/ .
SO, ILD 50K sio, ? '(I;?ri[]rir;al Resistance

 Heat conduction to substrate limited by interlevel
dielectric

* Interconnects with air-gaps show comparable thermal
performance to conventional SiO..
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e Electromigration Reliability
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Electromigration Reliability
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Hydrostatic Stress Simulations

constants used:
Aluminum

E =70 GPa

v =0.34

Gyiela = 200 MPa

Silicon Dioxide
E =83 GPa
v =0.20

e Failure defined when dielectric stress reaches fracture stress.
e Stress in metal simultaneous with fracture stress in dielectric
used to calculate electromigration lifetime.
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Simulated Reliability/Performance Tradeoff

Time to Failure and Percent Reduction
in Capacitance vs. Sidewall Thickness
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e Hydrostatic stress in Al when SiO, fractures is correlated with
electromigration lifetime.
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Electromigration Lifetimes:
0.27um Linewidth
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e Air-Gap splits show significantly Ponger lifetimes than Gapfill split
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Electromigration Lifetimes:
1.26um Linewidth
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e Air-Gap splits show slightly better lifetimes than Gapfill split
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FIB Mill Cross-Section

* Rigid gapfill dielectric unable
to deform and reduce stress
during electromigration.

* Flexible air-gap sidewall
deforms and reduces stress
during electromigration.

| NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing|
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Determination of Effective Modulus

O -1
=2 e=
E I
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FEM simulation of x-displacement FEM simulation of y-displacement

e Air-Gap Modulus of 10Gpa vs. Gapfill Modulus of 27GPa
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MIT/EMSim Simulation Results
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Lower effective modulus increases electromigration lifetime
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Electromigration Conclusions

* Air-gaps lower the effective modulus of the
dielectric.

* Lower modulus reduces stress during
electromigration.

o Effect of air-gap on modulus is greater in high
aspect ratio lines.

e Air-gaps increase electromigration lifetime more
In high aspect ratio lines.
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Conclusions

 Demonstrated that capacitance reduction using air-
gaps comparable to most low-K materials under
iInvestigation.

 Development of process techniques to reliably control
air-gap shape and size.

* Application of process and capacitance simulators to
iInterconnect modeling.

 Showed that electrical and thermal reliability of air-
gaps comparable to homogeneous SiO.,.

* Showed that electromigration reliability of air-gaps
can be significantly longer than traditional gapfill.
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