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Cross Section of IC Chip

• Modern IC’s use multiple levels of metal
interconnects to electrically connect transistors
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Interconnect Capacitance

S. Jeng, R.H. Havemann, and M. Chang, Mat. Res. Soc. Symp. Proc., 337, 1994, p.25.
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Lower Capacitance with Low-K Materials
Material Technique Trade Name Company k

SiO2 CVD 4.0-4.3
FxSiOy CVD 3.4-4.1
HSQ Spin-on Flowable Oxide Dow Corning

Allied Signal
2.9

Nanoporous Si Spin-on Nanoglass Allied Signal 1.3-2.5
F-polyimide Spin-on 2.6-2.9

Poly(arylene) ether Spin-on FLARE
VELOX

Allied Signal
Schumacher

2.6-2.8

Parylene AF4 CVD Novellus
Watkins Johnson

2.5

Aromatic
hydrocarbon

Spin-on SiLK Dow 2.65

PTFE Spin-on Speedfilm Gore 1.9
DVS-BCB Spin-on Dow 2.65

Hybrid SQ’s Spin-on MSQ Dow Corning <3.0
Amorphous FC, HFC CVD FLAC, F-DLC, CFx IBM, NEC

Novellus, HP, TEL
1.9-3.3

Amorphous SiOCH CVD Corral Novellus 2.7
Amorphous SiOCH CVD Black Diamond Applied Materials 2.7

vacuum 1.0

Table courtesy of Professor Karen Gleason at MIT 
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Low-K Material Issues

• Mechanical strength
• Dimensional stability
• Thermal stability
• Ease of pattern and etch
• Thermal conductivity
• CMP compatibility
• Moisture Absorption
• Complexity of integration
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Air-Gaps: Historical Perspective
• Often referred to as dielectric voids and/or

“keyholes.”
• Semiconductor industry has traditionally tried

to eliminate air-gaps: spin-on-glass, 
dep-etch-dep, TEOS, HDP-CVD.

• Difficult to integrate into process: cannot
control size and shape of air-gaps.

• Potential reliability problems: electromigration,
poor thermal conductivity, trap particles.

• Anecdotal accounts of capacitance decrease
due to unintentional air-gaps.
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Why Air-Gaps?

• Dielectric constant, K, approaching 1.
• Reduces dominating line to line

capacitance.
• Interlevel SiO2 left intact.
• Simple integration.
• Compatible with scaling trends - air

gaps easier to form with higher aspect
ratios.

• Good vehicle to study tradeoffs between
performance & reliability
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Environmental Impact

• No new materials or precursors
– SiH4, O2, Ar
– can use current toolsets (PECVD, HDP-CVD)
– do not need new etch or CMP processes

• Known environmental issues
– chamber clean
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Raphael “Box” Air-Gap Simulation Geometry
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Dependence of Keff Air-Gap Shape
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HSPICE Ring Oscillator Delay:
Static Capacitance
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HSPICE Ring Oscillator Delay:
Crosstalk Capacitance
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HSPICE Crosstalk Signal Integrity
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Air-Gap Formation

• Difference in view angle causes
“breadloafing” during SiO2 deposition.

• Greater “breadloafing” Larger air-gaps

Air-gap
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Deposition Topography

• Deposition topography depends on angular
distribution of incident flux and sticking coefficient
(Sc) of reactive species

Isotropic Flux
High Sc

Isotropic Flux
Low Sc

Directional Flux
High Sc
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SiO2 Chemical Vapor Deposition
(CVD) Technology

Low Pressure CVD

SiH4, O2 TEOS

Plasma Enhanced CVD

SiH4, N2O TEOS, O2

High Density
Plasma CVD

SiH4, O2

Substrate

Plasma Plasma
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Integration Issue: Air-Gap Extension

CMP

CMP opens air-gap

Air-Gap Extension

Line/Space = 0.3µm/0.3µm Line/Space = 0.4µm/0.4µm
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Controlling Air-Gap Extension

• First Step: Non-conformal deposition to form initial
air-gap.

• Second Step: HDP-CVD to keep seam from forming,
limit extent of air-gap above metal lines, and provide
local planarization

Non-conformal deposition
Non-conformal deposition + HDP-CVD

Narrow
Space

Wider
Space



Stanford University

23NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Profile After First Step

Line/Space = 0.3µm/0.3µm Line/Space = 0.4µm/0.4µm

• HDP-CVD: Modified recipe to produce non-conformal
deposition
– High Gas Flows
– Low Substrate Bias
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Profile After Second Step

Line/Space = 0.3µm/0.3µm Line/Space = 0.4µm/0.4µm

• HDP-CVD: optimized to prevent seam from forming,
limit extent of void above metal lines, and provide
local planarization
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Experimental Capacitance Data
0.3µm/0.3µm line/space
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• ~ 33 to 40 % capacitance reduction from HDP oxide
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Profile and Capacitance Modeling of
Experimental Results

Deposition
simulated using
SPEEDIE

Capacitance
calculation using
TMA Raphael

Experimental Profile
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Capacitance vs. Feature Size
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Integration Issue: Via Reliability

Litho 
mis-alignment

Via etch
 into air-gap Via metal fills air-gap

• First Step: Conformal deposition to control sidewall passivation
thickness.

• Second Step: Non-conformal deposition to form air-gap.



Stanford University

29NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

PETEOS and PESILOX to Control
Air-Gap Sidewall Thickness

AG1: 3kÅ PESILOX

AG2: 1kÅ PETEOS, 2kÅ PESILOX

AG3: 2kÅ PETEOS, 1kÅ PESILOX

AG4: 3kÅ PETEOS

0.54um 0.78um

HDP-CVD used to pinch-off air-gaps
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• Capacitance increases with sidewall thickness.
• Increase in via misalignment margin must be

balanced against capacitance increase.
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Electrical Reliability: Breakdown Voltage

• Paschen’s curves indicate that breakdown voltage increases
dramatically at submicron dimensions.

• Leakage data indicates no breakdown well above operating
voltage.
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*Raizer, Yuri P., “Gas Discharge Physics”, Springer-Verlag, 1997
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Simulated Joule Heating and
Thermal Reliability

• Heat conduction to substrate limited by interlevel
dielectric

• Interconnects with air-gaps show comparable thermal
performance to conventional SiO2.

Material ∆T above Tsubstrate

Homogeneous
SiO2 4.9 K

Homogeneous
low-K 76.7 K

Air-gaps w/
SiO2 ILD 5.2 K

Thermal Resistance
Circuit

SiO2

Al

Air-gapSiO2
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Electromigration Reliability
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Hydrostatic Stress Simulations

• Failure defined when dielectric stress reaches fracture stress.

• Stress in metal simultaneous with fracture stress in dielectric
used to calculate electromigration lifetime.

constants used:
Aluminum
E = 70 GPa
ν = 0.34
σyield = 200 MPa

Silicon Dioxide
E = 83 GPa
ν = 0.20



Stanford University

37NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Simulated Reliability/Performance Tradeoff
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• Hydrostatic stress in Al when SiO2 fractures is correlated with
electromigration lifetime.
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Electromigration Lifetimes:
0.27µm Linewidth
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• Air-Gap splits show significantly longer lifetimes than Gapfill split
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Electromigration Lifetimes:
1.26µm Linewidth
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FIB Mill Cross-Section

• Rigid gapfill dielectric unable
to deform and reduce stress
during electromigration.

• Flexible air-gap sidewall
deforms and reduces stress
during electromigration.
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Determination of Effective Modulus

FEM simulation of x-displacement FEM simulation of y-displacement

FEM plot of stress distribution
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• Air-Gap Modulus of 10Gpa vs. Gapfill Modulus of 27GPa
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MIT/EMSim Simulation Results

• Lower effective modulus increases electromigration lifetime
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Electromigration Conclusions

• Air-gaps lower the effective modulus of the
dielectric.

• Lower modulus reduces stress during
electromigration.

• Effect of air-gap on modulus is greater in high
aspect ratio lines.

• Air-gaps increase electromigration lifetime more
in high aspect ratio lines.
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Conclusions

• Demonstrated that capacitance reduction using air-
gaps comparable to most low-K materials under
investigation.

• Development of process techniques to reliably control
air-gap shape and size.

• Application of process and capacitance simulators to
interconnect modeling.

• Showed that electrical and thermal reliability of air-
gaps comparable to homogeneous SiO2.

• Showed that electromigration reliability of air-gaps
can be significantly longer than traditional gapfill.


