Informing Design for Environment (DfE) in Semiconductor Manufacturing

Nikhil Krishnan, Ph.D. Candidate, U C Berkeley
krishnan@cgdm.berkeley.edu
Ph: 510 5435114
408 5635810

Joaquin Rosales, Ph.D. Student, U C Berkeley
Prof. David Dornfeld, U C Berkeley
Content

- 1. LCA Context, Overview and Challenges
- 2. Overall, first-order semiconductor LCA results using Economic Input Output Methods
- 3. The Environmental Value Systems (EnV-S) Analysis
- 4. Connecting the EnV-S to LCA analyses: preliminary results
1. Context and Overview

from raw materials extraction to manufacture, use and end of life

Raw materials ➔ Manufacturing ➔ Use ➔ End of life

Design: Ability to effect environmental improvements/changes - Greatest leverage is during product design and development

Environmental and health issues concerns arise at each stage

Human health impacts ➔ Environmental impacts
Contextual background

• LCA as a support tool
• Strategies - inventory, impact, score
• Strategies - cradle to grave
Typical Methodologies for Implementation

- ‘Typical’ LCA Approach/SETAC
- Streamlined Approaches
- Economic Input Output
- Hybrid?

Pre-Analysis
- Why LCA?
- Kinds of results
- Scope
- Functional unit
- Fair comparison

Inventory Analysis
- Data sources and supplements
- Completeness - Cradle to grave?
- Scope and boundary

Impact Analysis
- Several Methods
- CML/SETAC

Classification
- Metrics scores
- Modeling intensive
- Damage functions?
- Weighting functions

Normalization
- Baseline effects
- Eco-indicator for Europe

Evaluation
- Weighting factors for one ‘score’
- Ecopoints?

An ‘accurate’ LCA approach
- Entire product life cycle
- Quantitative inventory
- Cost and time intensive
- Data gaps
- Uncertainties
Typical Methodologies for Implementation

- **Streamlined LCA (SLCA) - Gradel**
 - Simplified approach
 - Cost and time improvements
 - Similar results to full analysis?
 - Unexpected results unseen

<table>
<thead>
<tr>
<th>Impacts</th>
<th>Life cycle stage</th>
<th>Raw materials</th>
<th>Manufacturing</th>
<th>Use</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pollution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHS costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Economic Input Output - Green Design Initiative**
 - Sectoral approach
 - Circumvent data issues
 - Economic ripple effect
 - Cost and time improvements
 - Approximate nature
 - Temporally fixed on data
 - $1 million of asbestos related products

- **Hybrid Approaches**
 - Combine strengths of various approaches
 - Theoretically effective
 - Practical/implementation issues?
 - Case - specific application

Consortium on Green Design and Manufacturing

University of California, Berkeley
Commercial Software

- Product Based
 - Gabi (Stuttgart)
 - Simapro (Pré consultants)
 - Umberto (ifu Hamburg)
 - Others (LCAit, KCL, Sylvatica)

 • Tools use multiple databases/sources
 • Ease of use
 • Different valuation approaches
 • Databases are site/region specific
 • Databases are hidden - transparency issues
 • Valuation issues - site specific and hidden

Sankey diagram - Gabi
• Process focus
 – Idemat (TU Delft)

• Process focus - unusual
• Still, data driven

– Environmental Value Systems (EnV-S) Analysis (Berkeley)

• Process focus
• Model based
• More information on model-based approaches later
Challenges

1. Functional unit
 - Important for a fair comparison

2. Temporal scale
 - Analysis is static
 - Time lags cannot be understood

3. Spatial scale
 - Analysis of local Vs. global effects
 - Different at different stages of the inventory

Case Example (Semiconductors)

- Perfluorocarbon (PFC) Abatement
 - Comparison based on mass flow
 - Comparison based on wafer pass - 200, 300mm

- Copper in semiconductors
 - Idle flow, continuous flow (specification from the tool)
 - Copper discharge limits (bath dumps)
 - Need average analysis and peak analysis
 - Bay area - 2lb/day Cu discharge regulation, ~2ppm Cu concentration regulation

- Health factors Vs. Environmental factors

Health Hazard scoring

Challenges (contd.)

- **Boundary problem**
 - circumvented in Economic Input Output type analyses and streamlined analyses

- **Cost and time**
 - Variable and hard to judge
 - circumvented in Economic Input Output type analyses
 - Top down Vs. bottom up view of semiconductor manufacturing?

- **Data availability**
 - Gaps
 - Multiple, non-compatible sources
 - Obsolete
 - Monitoring energy consumption at tool
 - Estimating from recipes
 - Averaging from facilities

Case Example *(Semiconductors)*

Manufacturing phase

- [Diagram of manufacturing process]

Consortium on Green Design and Manufacturing

University of California, Berkeley
Challenges (contd.) Case Example (Semiconductors)

- **Product focus**
 - No process focus (ability to impact process)
 - No service focus (needs based analyses)

- **Uncertainty**
 - In methodology, data, impacts
 - Quantitative? Comparative?

- **Valuation**
 - Subjective decision making
 - No ‘correct’ approach
 - Site specific
 - Perhaps no standardization feasible - or sensible, given uncertainties

Inform design and decision making

Variation in Environmental Cost of Ownership

- Present multiple impacts
 - Health
 - Environmental
 - Manufacturing
 - Process
 - Cost
2. Environmental overview of the industry

Semiconductor Impacts relative to US National

Impacts

% of US National

- Liquid Waste
- Hazardous Waste
- GWP
- PFC's
- Water
- Electricity
- Chemicals

<table>
<thead>
<tr>
<th>Impacts</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Waste</td>
<td>75 gal/in^2 [1]</td>
</tr>
<tr>
<td>Hazardous Waste</td>
<td>0.1 kg/in^2 [1]</td>
</tr>
<tr>
<td>GWP</td>
<td>2.6 kgCE/in^2 [2, 3, 4]</td>
</tr>
<tr>
<td>PFC's</td>
<td>0.9 kgCE/in^2 [4]</td>
</tr>
<tr>
<td>Toxic Releases</td>
<td>0.01 kg/in^2 [5]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs to the Fab</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>30 gal/in^2 [3, 6, 2]</td>
</tr>
<tr>
<td>Electricity</td>
<td>10 KWhr/in^2 [2, 3]</td>
</tr>
<tr>
<td>Chemicals</td>
<td>0.2 kg/in^2 [5]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs from the Fab</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Waste</td>
<td>8.03E+04 billion gallons</td>
</tr>
<tr>
<td>Hazardous Waste</td>
<td>40.0 Million Tons</td>
</tr>
<tr>
<td>GWP</td>
<td>1600.0 MMTCE</td>
</tr>
<tr>
<td>PFC's</td>
<td>37.1 MMTCE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Toxic Releases</th>
<th>Million Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>123735 billion gallons</td>
</tr>
<tr>
<td>Electricity</td>
<td>3652.0 billion KWhr</td>
</tr>
<tr>
<td>Chemicals</td>
<td>8500.0 Million Tons</td>
</tr>
</tbody>
</table>

Impacts per square inch of Si
Life cycle environmental analysis for the semiconductor industry

- Using Economic Input-Output Analysis
1997 Summary of sector life cycle results

<table>
<thead>
<tr>
<th>Sector #570200: Semiconductors and related devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997 Data (Adjusted)</td>
</tr>
<tr>
<td>Size of Industry Output: 52924 Millions of Dollars</td>
</tr>
<tr>
<td>Output Semiconductors:</td>
</tr>
<tr>
<td>Liquid Waste: 2.543 Million Tons</td>
</tr>
<tr>
<td>Hazardous Waste: 23.231 MMTCE</td>
</tr>
<tr>
<td>GWP: 0.052 Million Tons</td>
</tr>
<tr>
<td>Toxic Releases: 0.203 Million Tons</td>
</tr>
<tr>
<td>Conventional Pollutants:</td>
</tr>
<tr>
<td>Water: 137.484 billion gallons</td>
</tr>
<tr>
<td>Electricity: 19.556 billion kW-hr</td>
</tr>
<tr>
<td>Chemicals:</td>
</tr>
</tbody>
</table>

1997 Economic Output Comparison of Selected US Industries

1997 Environmental Impact Comparison of Selected US Industries

1997 Environmental Impact Comparison of Selected US Industries (continued)

Consortium on Green Design and Manufacturing
University of California, Berkeley
1997 impacts normalized to sector output

- Semiconductor sector is high when normalized per $ of output
1997 and 1992 results comparison

3. The Environmental Value Systems (EnV-S) Analysis
Problem Statement & Baseline

• Equipment manufacturers need a tool for the quantitative evaluation and comparison of tool-centric environmental solutions

• EnV-S Model Blueprint
 – Focus the model on the process tool and the support equipment
 – Ensure the model output is in terms of important business metrics such as CoO
 – Factor in all controllable variables that significantly affect the key outputs
 – Provide sensitivity analysis for those controllable variables
 – Enable “what-if” comparisons between various solutions
 – Make the tool suitable for the casual user (i.e., user-friendly)
 – Use industry norms for cost/performance parameters (e.g., UPW costs)
 – Make the tool readily available and, if possible, an industry standard

EnV-S Summary

• The Environmental Value Systems (EnV-S) Analysis
 – Informing Design for Environment (DFE) in semiconductor manufacturing
 – Focus on bottom-up, tool-centric views - develop analysis for platforms
 – Inform design decisions for equipment suppliers

- Stepping stone to complete LCA - Spatial scale and boundary around the facility
- Bottom up as opposed to top down
 • Model as opposed to data based (temporal issues)
 • Data availability issues - better sensitivity analysis
- Valuation metrics
 • Discrete (uncombined)
 • Decisions are subjective and combinations of $ values, health and environmental and process issues
- Support equipment design, process design, new product development
Case study: PFC Abatement Option Space

Options space - Different combinations of abatement and downstream options

Analysis: (Environmental Cost of Ownership (COO))
1. Sensitivity analysis of costs and cost differences
2. Cost of downstream HF treatment as a function of flow and configuration parameters

Design graphs and trade off analysis

- 200mm flows are lower - there is region of operation (0-10c/wafer pass) With many chambers connected to a few absorption systems

Trade off analysis in examining different HF treatment systems
PFC Abatement Cost Variability

- Uncertain cost of individual options, but robust selections between options!

Legend
- Chamber
- Flow/chamber
- Flow/fab
- Absorption
- Plasma
- House scrubber
- Water Scrubbing
- Catalytic
- Combustion
- Pump

Cost variation - 200

Cost difference 200mm

Consortium on Green Design and Manufacturing

University of California, Berkeley
4. Connecting the EnV-S to LCA tools

• The EnV-S can be used as a DfE tool for
 – Semiconductor process and equipment design and selection

• Current work is expanding the analysis to new Semiconductor modules by developing platform-based modules (CMP, etch, deposition, etc.)

• One of the future directions
 – Expand the analysis to look at life cycle effect during the design stage. ie, DFE with a Life cycle focus.
 • This has potentially different users or audiences
 • Different applications within product design cycles

• Two approaches to this hybrid analysis
 – 1. EnV-S + SETAC LCA Methods
 – 2. EnV-S + Economic Input Output Method
 – Preliminary results with the second approach are outlined here
Case Study: the copper CMP process

Summary of parameters for a “typical” copper CMP process

<table>
<thead>
<tr>
<th>Liquid</th>
<th>Primer</th>
<th>21 g/min</th>
<th>0.01 $/wafer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UPW</td>
<td>7514 g/min</td>
<td>0.07 $/wafer</td>
</tr>
<tr>
<td></td>
<td>Slurry</td>
<td>0.13 gal/wafer</td>
<td>3.99 $/wafer</td>
</tr>
<tr>
<td></td>
<td>Other additives</td>
<td>0.08 g/min</td>
<td>0.00 $/wafer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solid</th>
<th>Pad</th>
<th>293 wafers/item</th>
<th>0.75 $/wafer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pad conditioning</td>
<td>167 wafers/item</td>
<td>0.60 $/wafer</td>
</tr>
<tr>
<td></td>
<td>PVA brushes</td>
<td>2333 wafers/item</td>
<td>0.13 $/wafer</td>
</tr>
<tr>
<td></td>
<td>Other consumables</td>
<td>2933 wafers/item</td>
<td>0.26 $/wafer</td>
</tr>
</tbody>
</table>

| Electricity | 3000 W | 0.01 $/wafer |
Preliminary results - life cycle CMP effects

- **Metric tons (MTCE for GWP)**:
 - Hazardous Waste
 - GWP

- **Million gallons**
 - Water

- **Tons**
 - Toxic Releases
 - Conventional Pollutants

- **MKW-hr**
 - Electricity
Summary and future work

- Preliminary life cycle effects using EIOLCA
 - high growth rates
 - high impacts/$
 - Explore applicability of data further
- Develop combination of EnV-S and EIOLCA and other life-cycle approaches
 - Compare results with SETAC-type methods for a few case studies
 - This could offer a quick and easy way
 - to inform DFE for certain environmental issues during early product development phases
 - Or to draft/examine broad policy decisions
Appendix
1992 summary of sector life cycle results

<table>
<thead>
<tr>
<th>Sector #570200: Semiconductors and related devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992 Data</td>
</tr>
<tr>
<td>Size of Industry Output</td>
</tr>
<tr>
<td>Output Semiconductors</td>
</tr>
<tr>
<td>Liquid Waste</td>
</tr>
<tr>
<td>Hazardous Waste</td>
</tr>
<tr>
<td>GWP</td>
</tr>
<tr>
<td>Toxic Releases</td>
</tr>
<tr>
<td>Conventional Pollutants</td>
</tr>
<tr>
<td>Input Semiconductors</td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Electricity</td>
</tr>
</tbody>
</table>

1992 Economic Output Comparison of Selected US Industries

1992 Environmental Impact Comparison of Selected US Industries

1992 Environmental Impact Comparison of Selected US Industries (continued)

Consortium on Green Design and Manufacturing

University of California, Berkeley
Environmental Trends

- Determining the right solution can be tedious
- Equipment makers need decision-enabling tools
- To be effective, tools must allow trade-off analysis

Typical Design Trade-Offs

- Operation costs?
- ROI?
- Point Of Use or Centralized?
- Capital costs?
- Types of Technology?
- Maintenance costs?
- Byproduct treatments?
- Energy Efficiency?
- Make or buy?
- Modular?
Summary of System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>200mm</th>
<th>300mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF4 (sccm) flow from process chamber</td>
<td>50</td>
<td>250</td>
</tr>
<tr>
<td>Throughput (wafers/chamber)</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Utilization (%)</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Annual hours of processing</td>
<td>6115</td>
<td>6115</td>
</tr>
<tr>
<td>Pump dilution ratio (nitrogen to gas flow)</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>C equivalent (g/min)</td>
<td>332</td>
<td>1662</td>
</tr>
<tr>
<td>Cequivalent (g / wafer pass)</td>
<td>1330</td>
<td>6648</td>
</tr>
<tr>
<td>C/year for a 5 layer etch (tons). 5000 wpsps</td>
<td>1728</td>
<td>8642</td>
</tr>
<tr>
<td>C from energy use (10KWhr/in^2, SIA Roadmap)</td>
<td>24937</td>
<td>56109</td>
</tr>
<tr>
<td>If unabated and unscrubbed, HF (g/wafer pass)</td>
<td>0.7</td>
<td>3.4</td>
</tr>
<tr>
<td>A difference of 1 c/wafer pass =</td>
<td>2751 $/Etch tool/year</td>
<td></td>
</tr>
</tbody>
</table>
Cost of HF treatment

2 choices were explored
- absorption
- water scrubbing

Absorption system details:
Could configure by
(i) cascading multiple chambers to an absorption system
(ii) Chaining multiple absorption systems together (essentially adjusting absorption capacity)

Plasma PFC Abatement
Modeled based on CF₄ flow rate

Absorption
Catalytic Combustion
Pump

(simplified equations)

\[CoO_{abs} = \frac{a.(FC + UC)}{c.w} + \frac{CC + DC}{a.w} \]

Where,
\[CoO_{abs} = \text{Absorption System Cost} \]
\[a = \text{Number of absorption systems cascaded together} \]
\[c = \text{Number of chambers connected to the systems} \]
\[FC = \text{Fixed costs/system/year} \]
\[UC = \text{Utility costs/system/year} \]
\[w = \text{Number of wafers processed/year} \]
\[CC = \text{Consumable costs} \]
\[DC = \text{Disposal costs} \]
Determining Important Variables

- For the individual units (plasma and catalytic), HF treatment costs are the most important!
- But these disappear in the plasma-catalytic CoO difference. Now catalytic capital cost is the biggest cost factor!