Using scCO$_2$ and Cosolvents for Microelectronics Processing

Peter T. Nguyen $^\beta$, Victor Q. Pham $^\beta$, Nelson M. Felix $^\beta$
and Prof. Christopher K. Ober $^{\beta,\alpha}$

April 3rd, 2003

$^\alpha$ Cornell University Department of Materials Science
$^\beta$ Cornell University Department of Chemical Engineering

In collaboration with
Prof. Karen K Gleason and Jessie Mao (MIT)
Outline

• Review of Supercritical Fluids (SCF)
 – Supercritical CO\textsubscript{2} (scCO\textsubscript{2}) and SCF properties
 – Reasons for interest in semiconductors (2 examples)

• Adding organic solvents to scCO\textsubscript{2} solutions
 – Effects

• Ober Group CO\textsubscript{2} System with Cosolvent Capabilities
 – Specifications

• Using scCO\textsubscript{2} and scCO\textsubscript{2} + cosolvent to develop photoresists
 – MIT/Cornell chemical vapor deposition (CVD) resist project
Outline (Continued)

• Difficulties / Concerns
 – Effects
 – Rationale for choosing cosolvent

• Conclusions / Outlook
 – Closing remarks
 – Acknowledgements
Why Consider Alternative to Organic Solvents?

- The semiconductor industry has been growing at an annual rate of about 15% over the last thirty years.
- Typically, a semiconductor processing line that produces 5000 wafers per day will generate 8000 liters of waste solvent and 8000 liters of contaminated rinse water per day.*
- These contaminated organic and aqueous solvents are environmentally unfriendly and costly to recover and dispose of.

Supercritical CO₂ (scCO₂)

• CO₂ is inexpensive and it has a moderate critical point: T_c (31.1 °C) and P_c (1070 psi). Non-flammable and non-corrosive.

• Gas-like diffusivity and viscosity, but liquid-like density.

 • Low viscosity and near zero surface tension.
 • No dipole moment, but a very large quadrupole moment.
Supercritical Fluids vs. Gases and Liquids

- Order-of-magnitude comparison of physicochemical properties of a typical gas, liquid, and a supercritical fluid (SCF)

<table>
<thead>
<tr>
<th>Property</th>
<th>Gas</th>
<th>SCF</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m³)</td>
<td>1</td>
<td>700</td>
<td>1000</td>
</tr>
<tr>
<td>Viscosity (g/cm s)</td>
<td>10^{-5}</td>
<td>10^{-4}</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>Diffusion Coefficient (cm²/s)</td>
<td>10^{-1}</td>
<td>10^{-4}</td>
<td>10^{-5}</td>
</tr>
</tbody>
</table>
Environmental Benefits of scCO$_2$

- CO$_2$ is naturally occurring and readily available (as a by-product from the production of other compounds.)
- When released into the atmosphere, liquid CO$_2$ leaves no residue to contaminate the environment or personnel.
- Processes that use CO$_2$ do not add directly to the greenhouse effect.
- CO$_2$-based processes can be more energy efficient than those based on water or conventional solvents since CO$_2$ has a low heat of vaporization.
- Approved by the EPA as a non-ozone-depleting chemical alternative.
Processing Benefits: Preventing Pattern Collapse

H$_2$O

CO$_2$

scCO$_2$ MEMS Drying Device

- CO$_2$ exchange displaces water or polar solvents
- Elimination of capillary forces

H. Namatsu, K. Yamakazi, K. Kurihara
Microelectronics Engineering, 46 (1999)
Effect of Cosolvents on Supercritical CO$_2$ Mixture

• Since CO$_2$ is not polar, polar solutes do not dissolve in scCO$_2$.

• Adding a small volume of a polar cosolvent can dramatically improve the solubility of a polar solute in scCO$_2$ thanks to interactions between the cosolvent and the solute.

• By adding cosolvents, we are affecting the thermodynamics of the mixture. Generally, these thermodynamic interactions are complicated.
Mixed Solvent Processing

Solvent Pump scCO₂ System
SCF Processing Vessel at Cornell

- Manufactured by Supercritical Fluid Technologies (Newark, DE)
Introducing Cosolvents:
The Ober Group Supercritical Fluid Technologies SFT-150

- Cosolvents are pumped into the system using a HPLC pump.
- CO_2 mixes with the cosolvent before passing through diffuser plates and into the processing vessel.
The Gleason group at MIT has been working on a system of *hot filament CVD* that can deposit uniform polymer films onto Si wafers.

The polymer used in this collaboration is poly(glycidyl methacrylate) – a known high-speed electron-beam (e-beam) resist.

Incident electrons induce a crosslinking reaction in the polymer film.

As is, poly(glycidyl methacrylate) is a negative-tone (exposed area remains after developing) resist system.
Hot Filament CVD of GMA

- Precursor GMA 3 sccm
- Energy input: 3.2 W
- Temperature: 200 ~ 240 °C

- Rapid deposition rate: >3,000 Å/min
- RMS roughness: <2 nm
- Thickness variation: <2 %
- MW range: 20K–120K

- thermal generation of growth species.
- low-energy process, low filament temperature.
- no UV irradiation and ion bombardment.
- control over reaction pathways.
- material utilization efficiency ~10%.
Crosslinking pGMA

\[
\text{e-} \quad \text{e-} \quad \text{develop}
\]

resist
wafer

\[
\text{H}_2\text{C} - \text{CH}_3 \\
\text{C} - \text{C} \\
\text{O} - \text{O} \\
\text{H}_2\text{C} - \text{CH} \\
\text{H}_2\text{C} - \text{O}
\]

\[
\text{H}_2\text{C} - \text{CH}_3 \\
\text{C} - \text{C} \\
\text{C} - \text{O} \\
\text{H}_2\text{C} - \text{CH}_3 \\
\text{C} - \text{O} - \text{O}
\]

\[
\text{H}_3\text{C} - \text{C} - \text{O} - \text{R}
\]
Results with pGMA

- As expected, the polymer is insoluble in scCO₂.
- Adding 2 vol% CH₂Cl₂ allows for some patterns to be developed.
Methods of Improving the Resist

- Adding fluorine containing groups to the polymer has the potential of dramatically improve the solubility in CO₂.

\[
\begin{align*}
\text{CH}_3 \quad \text{H}_2 \quad \text{C} - \text{C} \quad \text{O} \quad \text{O} \\
\text{C} - \text{C} \quad \text{H}_2 \quad \text{H} \quad \text{C} - \text{C} \\
\text{O} \quad \text{O} \\
\text{CH}_2 \quad \text{CH}_2 \quad (\text{CF}_2)_5 \quad \text{CHF}_2
\end{align*}
\]
FA-GMA Copolymer

CVD GMA-FA film, SCF CO₂ (n = 35, m = 65)
CVD GMA-FA film, SCF CO₂ + 2% EtOH
CVD GMA film, SCF CO₂ (n = 63, m = 37)

SCF CO₂ condition: 45 °C, 10~15 mins.
FA-GMA Copolymer (continued)

P = 6000 psi, T = 45 °C, t = 10 min
n = 35, m = 65
How We Chose the Cosolvent

• Choosing cosolvents is sometimes complicated……..

<table>
<thead>
<tr>
<th>Cosolvent</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrahydrofuran</td>
<td>Film Removed</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>Film Removed</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>No Effect</td>
</tr>
<tr>
<td>Acetone</td>
<td>No Effect</td>
</tr>
<tr>
<td>Ethanol</td>
<td>No Effect</td>
</tr>
<tr>
<td>Methanol</td>
<td>No Effect</td>
</tr>
</tbody>
</table>

This leads us to the next point…
An Alternative to Cosolvents: Specific Surfactants

- Specifically designed organic surfactants have been used as additives to scCO₂. For example:

Difficulties / Concerns

• Although there do exist methods of calculating solute solubility in SCFs, these methods may be cumbersome and impractical to apply to polymers.
• Qualitative methods do exist (GC column, solubility triangle, etc.) but they have limitations of their own.
• A rapid screening technique / predictive tool would be a great boon to the art of supercritical fluid processing / extraction.
• Some of the cosolvents that are being used are still not optimal. Cosolvents that are truly environmentally benign may not be effective.
A Look at an Ongoing Project: Replacing the Ashing Step with scCO$_2$

- The ashing step in a semiconductor plant is required to remove residual resist, barc, etc. from the wafer after etching.
- Is it possible to replace this ashing step with CO$_2$ and a cosolvent / surfactant?

Image courtesy of Phil Matz, Texas Instruments.

Sample pattern that has been etched, but not ashed. Magnification of 100X.
Outlook and Conclusions

• scCO$_2$ is a unique solvent that embodies many of the qualities that manufacturing may be interested in.
• By adding small volumes of cosolvents, the thermodynamic properties of a SCF mixture can dramatically change.
• We has shown that scCO$_2$ and cosolvents can be used together in order to develop a negative-tone photoresist.
• Conditions have yet to be optimized, and an improvement in resolution is expected in the near future.
Acknowledgements

NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing

Cornell Nanofabrication Facility (CNF)
Cornell Center for Materials Research (CCMR)
National Science Foundation (NSF)
Texas Instruments (TI)
Prof. Chris Ober (Cornell University)
The entire Ober Group (Cornell University)
Prof. Karen Gleason and Jessie Mao (MIT)