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•The scaling of metal-oxide-semiconductor (MOS) devices to sub-nanometer 
feature sizes requires thin gate insulators.
•Leakage current caused by electron tunneling increases exponentially with 
decreasing dielectrics thickness.
•Using high-κ materials allows deposition of thick films with an effective thickness 
equivalent to thin SiO2 films.

The Need for High-κ Dielectric Materials

P.A. Packan, Science, 1999
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Higher-κ film ⇒ thicker gate dielectric ⇒ lower leakage and power
dissipation with the same
capacitance

What factors need to be included in choosing a high-κ replacement?
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Benefits of High-κ Gate Dielectrics
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No mobility degradation
(low interface trap density)

No reaction with electrode 
(stop B penetration if poly-Si)

Low leakage current at the same 
equivalent Tox

Thermally stable on Si
(no need for barrier layer)

Equivalent Tox < 1 nmk > 15; uniform

Electrical PropertiesMaterial Properties

Ref.) Beyers et.al, J.Appl.Phys., 56, 147(1984)
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Atomic Layer Deposition of Metal Oxide

ZrCl4 or HfCl4

ZrO2 or HfO2

Substrate
Purge

Purge

Saturated Adsorption

ZrCl4(ad.) + 2H2O(g) -> ZrO2(s) + 4HCl(g)
HfCl4(ad.) + 2H2O(g) -> HfO2(s) + 4HCl(g)

H2O
HCl

ZrCl4 or HfCl4

ZrO2 or HfO2

Substrate
Purge

Purge

Saturated Adsorption

ZrCl4(ad.) + 2H2O(g) -> ZrO2(s) + 4HCl(g)
HfCl4(ad.) + 2H2O(g) -> HfO2(s) + 4HCl(g)

H2O
HCl

Surface saturation controlled deposition
Surface condition prior to deposition is critical
Layer-by layer deposition
Excellent film quality and step coverage
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Schematic Diagram of Stanford ALD System
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• Base pressure = ~10-8 Torr 
• Process temperature : 300°C
• Process pressure : 0.5 Torr
• Source temperature : H2O (liquid) = 20°C, HfCl4 (solid) = 150°C 
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ALD : Surface Saturation Controlled Process
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Layer-by layer deposition process
- Linear sub-monolayer growth rate
- Independence of precursor pulsing 
time
Surface sensitive deposition process
- uniform deposition only on 
hydrophilic surface

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing



9

Conformality and Surface Roughness of ALD Films

RMS roughness < 0.15nm 
for 3nm ZrO2 & HfO2

HfO2

ALD deposition of metal-oxide films 
- Excellent step coverage (~100%) on 
complicated geometric structures
- Smooth and uniform deposition 
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700°C, 30m, N2

Tetragonal

Micrstructure of ALD-HfO2
- As-deposited HfO2 : Amorphous
- Crystallization : starts over 500°C 
and majorly monoclinic phase 
having some tetragonal

After complete crystallization

Microstructural Properties of ALD-HfO2

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
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Series Pt electrode/HfO2/p-Si/Backside Al contact structure
Significant hysteresis not observed for thick dielectric layers: 

reduce bulk trap density by reducing Cl impurity content at Tdep = 
300°C.

Optimized electrical properties by reducing Cl concentration in HfO2
film.

Calculated dielectric constant of ALD-HfO2 is around 17.
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Electrical Properties of ALD-HfO2
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Approaches for Area-Selective ALD

• It eliminates several photolithography, wet etching and plasma etching steps during IC 
fabrication (environmentally benign).

• It is an innovational method for making nano-scale transistors and other devices. 

coat ALDwrite

Patterned surface first:

Direct patterning:  

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
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Experimental Investigating Methods

C-H Stretch

Si Crystal
IR SourceDetector

Attenuated Total Reflection Fourier Transform
InfraRed Spectroscopy   (ATR-FTIR)

Atomic Force Microscopy (AFM)

1.

2.

Investigation of surface 
reactivity both in-situ and 
ex-situ

Film quality investigation 
by exploring surface 
roughness
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Contact Angle (q)

Contact Angle (q)

Contact Angle Measurement

The hydrophobicity/hydrophilicity of a solid surface is usually expressed in 
terms of wettability which can be quantified by contact angle measurements.

q < 90o Hydrophilic q >90o Hydrophobic

http://www.ipfdd.de

Film quality investigation 
by exploring hydrophobic 
properties

3.
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Ellipsometry Measurement

s-plane

p-plane
p-plane

s-plane

plane of incidence

E E

sample

An ellipsometer enables to measure the refractive index and the thickness of 
semi-transparent thin films. 

Quick way for film thickness 
and conformality measurement

4.
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Experimental Investigating Methods (Con’t)

e -
e -

hn (X-ray)

Scanning Electron 
Microscopy (SEM)

e -
hn (X-ray)

X-ray Photoelectron 
Spectroscopy (XPS)

5. 6.

Image of patterned surfaceElemental quantity analysis
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FTIR Investigation of Reactivity and Selectivity

ν(Si-H)

ν(O-H)

Precursors Investigated:

Bromo-TMS

SiCH3

CH3

CH3

Br

Chloro-TMS

SiCH3

CH3

CH3

Cl

Tri-Cl-ES

SiCl

Cl

Cl

CH2CH3

• Chemical attachment of the compounds is 
evidenced by loss of Si-OH stretch and 
growth of C-H stretch

• Whereas the trichloro-compound (Tri-Cl-ES)
reacts with Si-OH groups, the monochloro-
compound (Chloro-TMS) did not.

• However, the monobromo-compound 
(Bromo-TMS) does appear to react with      
Si-OH

Experimental Results:

• Reactivity increases with more Cl substitution 
and moderately with Br substitution. 

Conclusion:

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
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Deactivating agent : TCES
HfO2 (50cycles) at 300°C

Gas Phase Delivery of Deactivating Agent for HfO2 ALD 

Cross-Sectional TEM Image
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HfO2

Native 
SiO2

Si bulk

Results:
Some precursors (e.g. TCES) react well at the surface, yet fail to deactivate the 
surface   toward HfO2 deposition, according to XPS, ellipsometry, and TEM
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Discussion:
• Those small organic molecules might not completely cover the whole surface 
under current reaction condition, or 

• Those small organic molecules might not survive at current ALD temperature 
(300°C), or 

• ALD precursors compete with organic molecules and react or cause 
desorption at current ALD temperature (300°C) . 

Solution:
• Find longer chain deactivating agents which can provide a better barrier to 
block ALD growth; 

• Modify the ALD process (e.g. new ALD precursors, conditions) for lower 
reaction temperature 

Current Work:Current Work:
Solution based attachment of Solution based attachment of alkyltrichlorosilanesalkyltrichlorosilanes

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Discussion of Gas Phase Delivery of Deactivating Agent
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Deactivation Chemical:
ODTS 

Octadecyltrichlorosilane

Reason:
One of the most popular silylating agents on native 
oxide silicon surface, it has high reactivity and 
relative stability at high temperature.

FTIR results:
Show  high reactivity at room temperature and long-
term stability in air.

Conclusion:
ODTS may be effective for deactivating HfO2
deposition.  

Longer Chain Alkylhalosilane Reaction on Surface

CH3-(CH2)17-SiCl3
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AFM Study of Dense ODTS Coated Surface (10nm*10nm)

Surface roughness is 0.053nm 
over the whole region

Surface is atomic level flat 
over 10nm*10nm region 

10nm*10nm | 5 nm 3D Image

Sectional Image
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AFM Study of Dense ODTS Coated Surface (1µm* 1µm)

Surface roughness is 0.49 nm 
over the whole scanning region

The height of bumps are around 
5~7nm

3D Image

Sectional Image

1µm*1 µm | 5 nm
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AFM Study of Dense ODTS Coated Surface (5µm* 5µm)

Surface roughness is 1.009 nm over 
the whole scanning region

The height of bumps are around 
5~7nm, which is consistent with 

literature suggestion that these bumps 
originate from polymerization during 

SAMs formation

3D Image

Sectional Image

5µm*5 µm  | 30 nm
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Contact Angle Study 

Native oxide silicon wafer 
q=23.51o Hydrophilic

Silicon wafer coated with dense 
ODTS q=107.08o Hydrophobic

Wafer treated by plasma Ozone 
q=3.47o Extremely Hydrophilic

Silicon wafer coated with loose 
ODTS q=93.52o Hydrophobic
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ALD 
Reactor

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Combined Deactivating Agents & ALD

ALD 
Reactor

Pump

Solution of 
deactivating 
agents

Bare silicon 
wafer

ALD 
precursor 1

ALD 
precursor 2

Take out 
samples for 

XPS analysis

A

C

B

A. Deactivating agents preparation and analysis;

B. ALD growth of  HfO2 ;

C. Sample characterization after deposition. 
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XPS Study of Different Starting Surface for HfO2 ALD

Bare silicon wafer Dense ODTS film

Dense  Tri-Cl-Et filmLoose ODTS film
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Ellipsometry Study

3.27%

14.16%

<0.57%

35.97%

HfO2 amount 
by XPS (%)

1.09%

4.72%
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1~24~615~16Dense Tri-
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ODTS film

/28~3015~16Dense 
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34~36/15~16Bare Silicon 
wafer
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deactivating 
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of native 
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Results & Conclusion of Deactivating Agents Study

Results: 

• AFM experiments show we have formed a pretty smooth SAMs on silicon 
surface; 

• Contact angle, Ellipsometry and XPS show consistent results;

• Dense chemical films show good blockage effect for HfO2 ALD growth; 

• The chain length might not be the only key factor for good deactivating agent.  

Conclusion:
• Densely formed ODTS film effectively deactivates for HfO2 ALD growth; 

• Formation of dense films by deactivating agents is one of the most important 
factors for achieving selective ALD;

• Need to modify gas phase delivery to achieve densely packing deactivating 
agents.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
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Surface Modification for Selective ALD

H H H H HH

OH OH OH OH OHOH

R R R R RROH OH H OH OHH

R R H R RH

R R X R RX

R R OH R ROH

native oxide or 
thermal oxide

surface 
etching

patterning 
oxide

µCP; MIMIC;Nano-
imprint lithography

surface 
coating

etching
direct patterning by UV,  

e-beam or scanning 
probeprotectingUV mask 

irradiation

R R H R RH

R R X R RX

deactivation and 
patterning schemes

activation for 
ALD film growth

activation of Si-H siteactivation of Si-H site
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New Surface patterning strategy — Soft Lithography

• Longer chain alkyltrichlorosilanes are difficult to 
introduce into vacuum chamber through leak valve.

• Several new methods for fabricating nano-
structures are suitable to pattern the surface.

• High resolution soft lithography techniques are 
used for test structure.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Xia, Rogers,Paul, Whitesides, Chem. Rev. 1999, l99.1823 Source: IBM
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Micro-contact Printing

Strategy: SEM image:

ODTS patterned surface before HfO2 deposition

ODTS patterned surface after HfO2 deposition

Without  
ODTS

Results & Discussion:
• SEM shows PDMS pattern can be well 

transferred to Si substrate
• ODTS can survive current ALD temperature
• Both OTS and HfO2 films are quite thin 

(around 20-40Å). So it is quite difficult use 
SEM to investigate the topographic change

• Needs new analytical technology such as 
Scanning Auger Microscopy (SAM), etc.

ODTS

ODTS

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
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Conclusions

• HfO2 gate dielectric ALD on blanket thin thermal and chemical 
(peroxide-last) oxide surfaces has been optimized.
• Microstructural and electrical properties of blanket ALD-HfO2

have been investigated.
• Longer chain alkylhalosilanes appear to provide better 
deactivation toward ALD.
• Wet chemistry is a good way for achieving dense SAMs 
compared with vacuum gas phase delivery.
• Soft lithography provides a good experimental platform for 
testing performance of deactivating precursors and the area-
selective ALD process.
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Future Work

• Develop process which utilizes gas phase delivery to achieve 
dense films of deactivating agents;
• Modify and investigate other deactivating agents;
• Use different methods for patterning and analyze patterned 
sample;
• Set-up and optimize new HfO2 precursors (Hf(NMe2)4) to lower 
ALD temperature (< 150°C); 
• Explore surface activation process for optimal dielectric/silicon 
interface.

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

HfO2 ALD growth


