Chip-Scale Modeling of Copper Plating Pattern Dependencies

Tae Park and Duane Boning

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

NSF/SRC Engineering Research

Center for Environmentally Benign Semiconductor Manufacturing

TeleSeminar

February 20, 2003

1

Motivation: Pattern Dependent Problems in Copper Interconnects

Outline

Introduction

Basics of Electroplating

Characterization and Modeling Methodology

- Test Mask Design and Measurement
- Data Trends
- Model Development
- Chip-Scale Simulation Approach
- Chip-Scale Simulation and Prediction Result

Conclusion

What is Copper Electroplating?

■ Copper Ion Solution

- Cu ions react with electrons and form copper at wafer surface
- Material deposited by a combination of
 - Faraday's law of electrolysis: amount of Cu deposition ~ current density
 - Added chemistry: suppresses or accelerates deposition rates on top and bottom of trenches => for bottom-up fill or superfill
 - ✓ Problem: non-uniform deposition due to layout patterns

Methodology for Electroplating Topography Characterization and Modeling

■ Goal: Chip-scale prediction of plated copper topography

Test Structure and Mask Design

- Purpose: capture and identify key pattern factors
- Basic test pattern: line and array structure
- Layout factors:
 - □ Pattern density from 10% to 90%
 - \Box Pitch from 0.5µm to 200µm for fixed pattern density of 50%

Measurement Plan and Sample Profile Scan

Profile scans taken across each line/array structure

Definitions of Electroplated Profiles

- Two topography variations defined
 - □ Step Height (SH): height associated with each copper line
 - □ Array Height (AH): height difference between the top of the raised features in an array and the flat copper field region over wide oxide

Electroplated Profile Trends: Pitch Structures

Step Height Data Analysis

- Trends
 - SH depends on line width: near zero or positive (superfill) for small features and becomes more conformal as line width increases
- Saturation Length: fill becomes fully conformal and SH = Trench Depth
 - Line width $L_W = 10 \mu m$

Array Height Data Analysis

■ Trends

- Positive (superfill) for small features, and becomes negative (conformal), and saturates to field level as line width increases
- Saturation length: fill becomes fully conformal and AH = 0Å
 - Line width $L_W = 10 \mu m$

SH and AH vs. Line Space

Trends

- Line space dependency for SH and AH is similar to line width dependency
- Saturation length: similar value is observed for line space
 - Line space $L_S = 10 \mu m$

Transition Length Scale in Electroplating

Plating depends on local feature (feature scale) and nearest neighbors within 2-5µm range

Modeling Approach

- Trends are observed in electroplated topography dependent on the underlying layout parameters of line width and space
- Possible Implementation: Physical Feature-Scale Model
 - Often based on numerical analysis
 - □ Computationally prohibitive
 - Not suitable for chip-scale prediction: a wide range and combinations of line widths and spaces found in a "random" layout
- Our Approach: Response Surface Model: Height ~ f(underlying layout parameters)
 - □ Effective in chip-scale prediction (our eventual goal!)
 - □ Suitable for "random" layout

How do we choose the model variables?

- Physically motivated model variables are desired
- □ Examine: basic principles and superfill effect

Basic Electroplating Principles

Governing Principle: Faraday's law of electrolysis
 Amount of copper deposition ~ current density J

$$J = \sigma E = -\sigma \nabla \phi$$

- Both line width and line space influence copper deposition rate
- Problem: voids are formed inside a trench due to early closing of trench top corners I Superfill plating introduced

Superfill Effect

Various proposed mechanisms fall into two general categories

Diffusion-Adsorption

Additive-Accumulation

Aspect ratio (depth/width) influences plating rate

Semi-Empirical Model for Topography Variation

- Physically Motivated Model Variables:
 Width, Space, 1/Width, and Width*Space
- Semi-Empirical Model Development
 Capture both conformal regime and superfill regime in one model frame
 1/W² and W² terms explored as well
- Model Form

□ Array Height:

$$AH = a_E W + b_E W^{-1} + c_E W^{-2} + d_E S + e_E W \times S + Const_E$$

□ Step Height:

$$SH = a_S W + b_S W^{-1} + c_S W^2 + d_S S + e_S W \times S + Const_S$$

Model Fit: Step Height and Array Height

- The models capture both trends well
 Step Height RMS error = 327 Å
 Array Height RMS error = 424 Å
- Model coefficients are calibrated and used for chip-scale simulations

Outline

Procedure for Chip-Scale Prediction

Chip-Scale Simulation: Basic Approach

Approach:

- Compute a generalized "average" (area-weighted) array height and step height for a grid cell
- Grid cells are equally divided small regions on a die

Example: CASE 1:

- AH_{Avg} = (-2000Å x 24μm + 0Å x 16μm)/40μm = -1200Å
- SH_{Avg} = (-3000Å x 24μm + -5000Å x 16μm)/40μm = -3800Å

■ Example: CASE 2:

- AH_{Avg} = (1500Å x 24μm + 0Å x 16μm)/40μm = 900Å
- SH_{Avg} = (0Å x 24μm + -5000Å x 16μm)/40μm = -2000Å

Layout Extraction: Line Width and Length for Random Layout

Line Width: shorter dimension; Line Length: longer dimension

Polygons: cut into rectangles and apply the same definition

Example Grid Cell and Layout Extraction Result

Example Layout Extraction

Layout Parameter Extracted	Values
Min. W	1.5µm
Avg. W	2.182µm
Max. W	4μm
Avg. Length, $\overline{\mathbf{L}}$	40µm
Layout Copper Pattern Density, ρ_{c}	60%
Bin 1: Min_CD < W < 0.35μm	0 Count
Bin 2: 0.35μm < W <= 0.5μm	0 Count
Bin 3: 0.5μm < W <= 1μm	0 Count
Bin 4: 1μm < W <= 2μm	8 Counts
Bin 5: 2μm < W <= 5μm	3 Counts
Bin 6: 5μm < W <= 10μm	0 Count
Bin 7: 10μm < W	0 Count
Total Count (of lines in all bins)	11
X, Y Location of the Grid Cell	X ₀ , Y ₀

Use a binning approach to the distribution of line widths

Gives a count of the number of lines having a line width in each bin of the line width distribution

Layout Extraction and Simulation Procedure

- 1. Assign representative line width for each bin
- 2. Derive line space for each bin from copper pattern density and line width bins
- 3. Compute area occupied by lines in each bin
- 4. Simulate step and array heights for each bin
- 5. Determine step and array heights by area-weighted averages

1. Representative Line Width for Each Bin

Assign a representative width for each bin: mean of the low and high cutoff values of each bin

Width, W _i , for i th Bin	Min. Line Width for Each Bin	Max. Line Width for Each Bin	Assigned Line Width
W1	$Min_CD = 0.25 \mu m$	0.35µm	$(Min_CD + 0.35)/2 = 0.3\mu m$
W2	0.35µm	0.5µm	0.425µm
W3	0.5µm	1µm	0.75µm
W4	1µm	2µm	1.5µm
W5	2μm	5µm	3.5µm
W6	5µm	10µm	7.5µm
W7	10µm		$L_W = 10 \mu m$

2. Average Line Space for Each Bin *i*

$$\rho_{c} = \frac{W}{W+S}$$

Estimate line space S in terms of the available copper pattern density, ρ_c , and width, W

$$S_i = \frac{W_i(1 - \rho_c)}{\rho_c}$$

3. Compute Area Occupied by Lines in Each Bin

 $A_i = W_i \cdot N_i \cdot \overline{L}$

■ W_i is the assigned line width for the i^{th} bin ■ N_i is the number of lines in the i^{th} bin ■ \bar{L} is the average line length in the grid cell

4. Simulate Step and Array Height for Each Bin

$$AH_{i} = a_{A}W_{i} + b_{A}W_{i}^{-1} + c_{A}W_{i}^{-2} + d_{A}S_{i} + e_{A}W_{i} \times S_{i} + Const_{A}$$

$$SH_{i} = a_{S}W_{i} + b_{S}W_{i}^{-1} + c_{S}W_{i}^{2} + d_{S}S_{i} + e_{S}W_{i} \times S_{i} + Const_{S}$$

■ a_A through e_A and a_S through e_S are the empirically extracted model coefficients for AH and SH, respectively

5. SH and AH by Area-Weighted Averages

$$AH = \begin{pmatrix} 0 & Total \ Count = 0 & or & \rho_c < 0.01 \\ -H_o \ (Trench \ Depth) & Copper \ Pattern \ Density \ \rho_c > 0.99 \\ \frac{\sum(AH_i \cdot A_i)}{A} & Otherwise \\ SH = \begin{pmatrix} 0 & Total \ Count = 0 & or & \rho_c < 0.01 \\ 0 & Copper \ Pattern \ Density \ \rho_c > 0.99 \\ \frac{\sum(|SH_i| \cdot A_i)}{A} & Otherwise \end{pmatrix}$$

Total area A is the sum of each bin area A_i , or $A = \sum A_i$

Topography Pattern Density

The topography density ρ_T represents the area fraction of "raised" features in each grid cell

$$\rho_T = \begin{pmatrix} \rho_c & SH > 0\\ 1 - \rho_c & SH < 0\\ 1 & SH = 0 \end{pmatrix}$$

 \blacksquare ρ_c is the layout copper pattern density as computed by the layout extractor

Outline

Chip-Scale Simulation and Prediction Results

Chip-Scale Simulation Calibration Results

Simulated over the entire test mask used to calibrate the model

RMS errors are slightly greater (about 90Å and 10Å more) than fitting RMS errors since distribution values are used

Chip-Scale Prediction and Verification Result: Arbitrary Chip

Prediction RMS Error = 479Å

Chip-scale prediction is achieved!

Step height trend is predicted with RMS error of 479 Å

Chip-Scale Prediction and Verification Result: Arbitrary Chip

Chip-scale prediction is achieved!

Array height trend is predicted with RMS error of 870 Å

Topography Pattern Density

- Topography density: as-plated surface topography pattern density of raised features
 - □ Depends on plating characteristics
 - □ Important as an input for CMP pattern density model

Layout Density

Topography Density

Conclusion

- Characterization and modeling methodology has been developed for pattern dependent topography variation of copper plating process
- Test mask design

□ Line/array structures with different layout factors to identify key trends

■ Trends of step and array heights

Depend on underlying layout parameters of line width and space

- Semi-empirical response surface model
 - □ Captures overall trend including both conformal fill and superfill
 - Enables effective computation of topography simulation across an entire chip
- Chip-scale simulation and prediction
 - □ Chip-scale simulation methodology is developed
 - □ Chip-scale prediction achieved for arbitrary layout

Acknowledgment

DARPA & NSF

- SRC/ERC for Environmentally Benign Semiconductor Manufacturing
- Texas Instruments
- International SEMATECH
- PDF Solutions
- Praesagus
- SKW Associates
- Applied Materials

