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Motivation: Pattern Dependent Problems
in Copper Interconnects
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Outline

■ Introduction
❏ Basics of Electroplating

■ Characterization and Modeling Methodology
❏ Test Mask Design and Measurement
❏ Data Trends
❏ Model Development
❏ Chip-Scale Simulation Approach
❏ Chip-Scale Simulation and Prediction Result

■ Conclusion
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What is Copper Electroplating?

Side View

■ Copper Ion Solution
• Cu ions react with electrons and form copper at wafer surface

■ Material deposited by a combination of
• Faraday’s law of electrolysis: amount of Cu deposition ~ current

density
• Added chemistry: suppresses or accelerates deposition rates on top

and bottom of trenches => for bottom-up fill or superfill
✔ Problem: non-uniform deposition due to layout patterns

Wafer

Solid Copper

Copper Ion Solution

(Cathode)

(Anode)

Cu Ions
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Methodology for Electroplating Topography
Characterization and Modeling

■ Goal: Chip-scale prediction of plated copper topography

Electroplating Process
• Fixed plating

process settings Layout Parameter
Extraction

Product Chip Layout

Electroplating/CMP
Test Wafers

Model Parameter
Extraction

• Measure step height, array
bulge/recess and field copper
thickness

• Characterize thickness
variation vs. layout patterns

• Develop a model

Calibrated Electroplating
Pattern Dependent Model

Prediction of step height and array height across an entire chip

Chip-Scale
Simulation
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Test Structure and Mask Design

Isolated Line Array Region

Copper Test Mask (V1.2)

20mm

20mm

■ Purpose: capture and identify key pattern factors
■ Basic test pattern: line and array structure
■ Layout factors:

❏ Pattern density from 10% to 90%
❏ Pitch from 0.5µm to 200µm for fixed pattern density of 50%

Basic Test Structure

2mm

2mm

0.5mm
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Measurement Plan and Sample Profile Scan

■ Profile scans taken across each line/array structure

Isolated Line Array Region

Thickness Measurement

Bulge

Zoom

Recess

Step Height

Step Height

Step Height
(Isolated Line)

(Isolated Line)

(Array Line)

into array

Superfill

Conformal Fill

Test Mask

X X

Profile Scan
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Definitions of Electroplated Profiles

■ Two topography variations defined
❏ Step Height (SH): height associated with each copper line
❏ Array Height (AH): height difference between the top of the raised

features in an array and the flat copper field region over wide oxide

0

Sample Scans

Oxide

SH

AH

0

Fine Line Large Line Fine Line Large Line
Fine Space Large Space Medium Space Fine Space

AH

AH

SH
AH

SH
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Electroplated Profile Trends: Pitch Structures
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Step Height Data Analysis

10
−1

10
0

10
1

10
2

−6000

−4000

−2000

0

2000

10
−1

10
0

10
1

10
2

−6000

−4000

−2000

0

2000

Line Width (µm) - Log Scale

Array
Line

Isolated
Line

LW

St
ep

 H
ei

gh
t 

(Å
)

Step Height vs. Line Width

■ Trends
• SH depends on line width: near zero or positive (superfill) for small features

and becomes more conformal as line width increases
■ Saturation Length: fill becomes fully conformal and SH = Trench Depth
• Line width LW = 10µm

0.5µm
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Array Height Data Analysis
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■ Trends
• Positive (superfill) for small features, and becomes negative (conformal),

and saturates to field level as line width increases
■ Saturation length: fill becomes fully conformal and AH = 0Å
• Line width LW = 10µm
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SH and AH vs. Line Space

■ Trends
• Line space dependency for SH and AH is similar to line width dependency

■ Saturation length: similar value is observed for line space
• Line space LS = 10µm

Array Height vs. Line Space

10
−1

10
0

10
1

10
2

−4000

−2000

0

2000

4000

6000

A
rr

ay
 H

ei
gh

t 
(Å

)

LS

10
−1

10
0

10
1

10
2

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

LS

St
ep

 H
ei

gh
t 

(Å
)

Step Height vs. Line Space

Array
Line

Line Space (µm) - Log ScaleLine Space (µm) - Log Scale



NFS/SRC ERC TeleSeminar 13 MIT

Chip-Scale Modeling of Copper Plating Pattern Dependencies

Transition Length Scale in Electroplating

■ Plating depends on local feature (feature scale) and nearest
neighbors within 2-5µm range
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Modeling Approach

■ Trends are observed in electroplated topography dependent
on the underlying layout parameters of line width and space

■ Possible Implementation: Physical Feature-Scale Model
❏ Often based on numerical analysis
❏ Computationally prohibitive
❏ Not suitable for chip-scale prediction: a wide range and combinations of

line widths and spaces found in a “random” layout

■ Our Approach: Response Surface Model:
Height ~ f(underlying layout parameters)

❏ Effective in chip-scale prediction (our eventual goal!)
❏ Suitable for “random” layout

✔ How do we choose the model variables?
❏ Physically motivated model variables are desired
❏ Examine: basic principles and superfill effect
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Basic Electroplating Principles

■ Governing Principle: Faraday’s law of electrolysis
❏ Amount of copper deposition ~ current density J

■ Both line width and line space influence copper deposition rate

■ Problem: voids are formed inside a trench due to early closing
of trench top corners ☞ Superfill plating introduced

J σE σ– ∇φ==

W1

NarrowWide Trench

Electric Field

Converging
Electric Field

Diverging
Electric Field

S1 S2

Narrow Wide Space

Uniform
Electric Field

Higher Convergence
of Electric Field

W2

Space
Trench
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Superfi ll Effect

■ Various proposed mechanisms fall into two general categories

■ Aspect ratio (depth/width) influences plating rate

Oxide

~10µm
Stagnant Zone

Bulk Solution

Boundary Layer
Suppressors
by diffusion

Suppressors at their
bulk concentration

Suppressor adsorbed on the surface
and consumed in copper deposition

Decreasing
Suppressor
Concentration

Diffusion-Adsorption Additive-Accumulation

t = 0+ sec. t = 10 sec.

t = 20 sec. t = 60 sec.

Additives in
Equilibrium

Conformal plating started
Acc. accumulate near base,
displacing Supp.

Rapid growth near base as
Acc. continue accumulate
due to decrease of surface
area inside the trench

Continued rapid copper
growth and causes bump

Accelerators
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Semi-Empirical Model for Topography Variation

■ Physically Motivated Model Variables:
❏ Width, Space, 1/Width, and Width*Space

■ Semi-Empirical Model Development
❏ Capture both conformal regime and superfill regime in one model frame

❏ 1/W2 and W2 terms explored as well

■ Model Form
❏ Array Height:

❏ Step Height:

AH aEW bEW
1–

cEW
2–

dES eEW S× ConstE+ + + + +=

SH aSW bSW
1–

cSW
2

dSS e+
S
W S× ConstS+ + + +=
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Model Fit: Step Height and Array Height

■ The models capture both trends well
❏ Step Height RMS error = 327 Å
❏ Array Height RMS error = 424 Å

■ Model coefficients are calibrated and used for chip-scale
simulations

10
−1

10
0

10
1

10
2

−6000

−4000

−2000

0

2000

10
−1

10
0

10
1

10
2

−6000

−4000

−2000

0

2000

Line Width (µm)

Array
Line

Isolated
Line

St
ep

 H
ei

gh
t 

(Å
)

Step Height vs. Line Width

* = Data
o = Model Fit

10
−1

10
0

10
1

10
2

−4000

−2000

0

2000

4000

6000

Line Width (µm)

E
nv

el
op

e 
H

ei
gh

t 
(Å

)

Array Height vs. Line Width

* = Data
o = Model Fit



NFS/SRC ERC TeleSeminar 19 MIT

Chip-Scale Modeling of Copper Plating Pattern Dependencies

Outline

■ Procedure for Chip-Scale Prediction

Electroplating Process
• Fixed plating

process settings
Layout Parameter

Extraction

Product Chip Layout

Electroplating/CMP
Test Wafers

Model Parameter
Extraction

• Measure step height, array
bulge/recess and field copper
thickness

• Characterize thickness
variation vs. layout patterns

• Develop a model

Calibrated Electroplating
Pattern Dependent Model

Prediction of step height and array height across an entire chip

Chip-Scale
Simulation
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Chip-Scale Simulation: Basic Approach

40µm

40µm

Electroplated Surface Profiles

AH (-2000Å)

SH (0Å)

SH (-5000Å)

AH (0Å)

CASE 1

AH (1500Å)

AH (0Å)

SH (-5000Å)

CASE 2

SH (-3000Å)

Region A: 24µm Region B=16µm

■ Approach:
❏ Compute a generalized “average”

(area-weighted) array height and
step height for a grid cell

❏ Grid cells are equally divided small
regions on a die

■ Example: CASE 1:
• AHAvg = (-2000Å x 24µm + 0Å x 16µm)/40µm

= -1200Å
• SHAvg = (-3000Å x 24µm + -5000Å x 16µm)/40µm

= -3800Å

■ Example: CASE 2:
• AHAvg = (1500Å x 24µm + 0Å x 16µm)/40µm

= 900Å
• SHAvg = (0Å x 24µm + -5000Å x 16µm)/40µm

= -2000Å
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Layout Extraction: Line Width and Length for
Random Layout

■ Line Width: shorter dimension; Line Length: longer dimension

■ Polygons: cut into rectangles and apply the same definition

One Grid Cell

W

L

W W

L

W

L L

W

L

One Grid Cell
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Example Grid Cell and Layout Extraction Result

■ Use a binning approach to the distribution of line widths
❏ Gives a count of the number of lines having a line width in each bin of

the line width distribution

40µm

40µm

Eight Lines

width=1.5µm

Three Lines

Region A: 24µm Region B=16µm

width 4µm

Example Layout Extraction

Layout Parameter Extracted Values

Min. W 1.5µm

Avg. W 2.182µm

Max. W 4µm

Avg. Length, L 40µm

Layout Copper Pattern Density, ρc 60%

Bin 1: Min_CD < W < 0.35µm 0 Count

Bin 2: 0.35µm < W <= 0.5µm 0 Count

Bin 3: 0.5µm < W <= 1µm 0 Count

Bin 4: 1µm < W <= 2µm 8 Counts

Bin 5: 2µm < W <= 5µm 3 Counts

Bin 6: 5µm < W <= 10µm 0 Count

Bin 7: 10µm < W 0 Count

Total Count (of lines in all bins) 11

X, Y Location of the Grid Cell Xo, Yo

space=1.5µm space=2µm
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Layout Extraction and Simulation Procedure

One Grid Cell

Mask discretized into
40 x 40µm cells

Layout extractor is used to
compute layout parameters
in each cell

Layout Parameters Extracted
for Each Cell:

- Average, min., and max.
line width

- Average line length
- Copper pattern density
- Line width distributions

1. Assign representative line width for each bin
2. Derive line space for each bin from copper pattern density and line width bins
3. Compute area occupied by lines in each bin
4. Simulate step and array heights for each bin
5. Determine step and array heights by area-weighted averages

Mask Layout

Layout
Parameters

Chip-Scale Simulation

Layout Extraction

Area-Weighted Average of Each Bin
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1. Representative Line Width for Each Bin
■ Assign a representative width for each bin: mean of the low and high cutoff values of

each bin

2. Average Line Space for Each Bin i

■ Estimate line space S in terms of the available copper pattern density, ρc, and width, W

Width, Wi, for ith Bin
Min. Line Width

for Each Bin
Max. Line Width

for Each Bin
Assigned Line Width

W1 Min_CD = 0.25µm 0.35µm (Min_CD + 0.35)/2 = 0.3µm

W2 0.35µm 0.5µm 0.425µm

W3 0.5µm 1µm 0.75µm

W4 1µm 2µm 1.5µm

W5 2µm 5µm 3.5µm

W6 5µm 10µm 7.5µm

W7 10µm LW = 10µm

ρc
W

W S+
---------------=

Si

W i 1 ρc–( )

ρc
---------------------------=
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3. Compute Area Occupied by Lines in Each Bin

■ Wi is the assigned line width for the ith bin

■ Ni is the number of lines in the ith bin
■  is the average line length in the grid cell

4. Simulate Step and Array Height for Each Bin

■ aA through eA and aS through eS are the empirically extracted model coefficients for AH
and SH, respectively

Ai W i N i L⋅ ⋅=

L

AHi aAW i bAW i
1–

cAW i
2–

dASi eAW i Si× ConstA+ + + + +=

SHi aSW i bSW i
1–

cSW i
2

dSSi e+
S
W i Si× ConstS+ + + +=
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5. SH and AH by Area-Weighted Averages

■ Total area A is the sum of each bin area Ai, or

AH

0 Total Count 0= or ρc 0.01<

Ho Trench Depth( )– Copper Pattern Density ρc 0.99>

AHi Ai⋅( )
i
∑

A
------------------------------ Otherwise









=

SH

0 Total Count 0= or ρc 0.01<

0 Copper Pattern Density ρc 0.99>

SHi Ai⋅( )
i
∑

A
-------------------------------- Otherwise









=

A Ai∑=

100µm

d

d

100µm

Case 1: Cell within field
Case 2: Cell within trench

Special Cases:

SH (3000Å)

SH (-3000Å)

SH cancellation
Effect



NFS/SRC ERC TeleSeminar 27 MIT

Chip-Scale Modeling of Copper Plating Pattern Dependencies

Topography Pattern Density

■ The topography density ρT represents the area fraction of
“raised” features in each grid cell

■ ρc is the layout copper pattern density as computed by the layout extractor

ρT

ρc SH 0>

1 ρc– SH 0<

1 SH 0=





=

Oxide

Layout Density = 20%60%

Region A Region B

Topography Density = 20%40%

Negative SH Positive SH

Copper
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Outline

■ Chip-Scale Simulation and Prediction Results

Layout Parameter
Extraction

Product Chip Layout

Calibrated Electroplating
Pattern Dependent Model

Prediction of step height and array height across an entire chip

Chip-Scale
Simulation

Test Mask

Experiment, Measurement
and Model Calibration

Verification Actual Measurement Data
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Chip-Scale Simulation Calibration Results

■ Simulated over the entire test mask used to calibrate the model

■ RMS errors are slightly greater (about 90Å and 10Å more) than fitting RMS
errors since distribution values are used
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Chip-Scale Prediction and Verification Result:
Arbitrary Chip

✔ Chip-scale prediction is achieved!

■ Step height trend is predicted with RMS error of 479 Å
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Chip-Scale Prediction and Verification Result:
Arbitrary Chip

✔ Chip-scale prediction is achieved!

■ Array height trend is predicted with RMS error of 870 Å
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Topography Pattern Density

■ Topography density: as-plated surface topography pattern
density of raised features
❏ Depends on plating characteristics
❏ Important as an input for CMP pattern density model

Topography DensityLayout Density
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Conclusion

■ Characterization and modeling methodology has been
developed for pattern dependent topography variation of
copper plating process

■ Test mask design
❏ Line/array structures with different layout factors to identify key trends

■ Trends of step and array heights
❏ Depend on underlying layout parameters of line width and space

■ Semi-empirical response surface model
❏ Captures overall trend including both conformal fill and superfill
❏ Enables effective computation of topography simulation across

an entire chip

■ Chip-scale simulation and prediction
❏ Chip-scale simulation methodology is developed
❏ Chip-scale prediction achieved for arbitrary layout
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	Pattern density from 10% to 90%
	Pitch from 0.5mm to 200mm for fixed pattern density of 50%


	Model Fit: Step Height and Array Height
	The models capture both trends well
	Step Height RMS error = 327 Å
	Array Height RMS error = 424 Å

	Model coefficients are calibrated and used for chip-scale simulations
	1. Representative Line Width for Each Bin
	Assign a representative width for each bin: mean of the low and high cutoff values of each bin
	W1
	Min_CD = 0.25mm
	0.35mm
	(Min_CD + 0.35)/2 = 0.3mm
	W2
	0.35mm
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	7.5mm
	W7
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	LW = 10mm

	2. Average Line Space for Each Bin i
	Estimate line space S in terms of the available copper pattern density, rc, and width, W


	Step Height Data Analysis
	Trends
	• SH depends on line width: near zero or positive (superfill) for small features and becomes more...

	Saturation Length: fill becomes fully conformal and SH = Trench Depth
	• Line width LW = 10mm


	Array Height Data Analysis
	Trends
	• Positive (superfill) for small features, and becomes negative (conformal), and saturates to fie...

	Saturation length: fill becomes fully conformal and AH = 0Å
	• Line width LW = 10mm


	SH and AH vs. Line Space
	Trends
	• Line space dependency for SH and AH is similar to line width dependency

	Saturation length: similar value is observed for line space
	• Line space LS = 10mm


	Transition Length Scale in Electroplating
	Plating depends on local feature (feature scale) and nearest neighbors within 2-5mm range

	Basic Electroplating Principles
	Governing Principle: Faraday’s law of electrolysis
	Amount of copper deposition ~ current density J

	Both line width and line space influence copper deposition rate
	Problem: voids are formed inside a trench due to early closing of trench top corners + Superfill ...

	Modeling Approach
	Trends are observed in electroplated topography dependent on the underlying layout parameters of ...
	Possible Implementation: Physical Feature-Scale Model
	Often based on numerical analysis
	Computationally prohibitive
	Not suitable for chip-scale prediction: a wide range and combinations of line widths and spaces f...

	Our Approach: Response Surface Model:
	Height ~ f(underlying layout parameters)
	Effective in chip-scale prediction (our eventual goal!)
	Suitable for “random” layout
	How do we choose the model variables?
	Physically motivated model variables are desired
	Examine: basic principles and superfill effect


	3. Compute Area Occupied by Lines in Each Bin
	Wi is the assigned line width for the ith bin
	Ni is the number of lines in the ith bin
	is the average line length in the grid cell

	4. Simulate Step and Array Height for Each Bin
	aA through eA and aS through eS are the empirically extracted model coefficients for AH and SH, r...


	5. SH and AH by Area-Weighted Averages
	Total area A is the sum of each bin area Ai, or

	Topography Pattern Density
	The topography density rT represents the area fraction of “raised” features in each grid cell
	rc is the layout copper pattern density as computed by the layout extractor


	Outline
	Chip-Scale Simulation and Prediction Results
	Calibrated Electroplating Pattern Dependent Model

	Chip-Scale Simulation: Basic Approach
	Approach:
	Compute a generalized “average” (area-weighted) array height and step height for a grid cell
	Grid cells are equally divided small regions on a die

	Example: CASE 1:
	• AHAvg = (-2000Å x 24mm + 0Å x 16mm)/40mm = -1200Å
	• SHAvg = (-3000Å x 24mm + -5000Å x 16mm)/40mm = -3800Å

	Example: CASE 2:
	• AHAvg = (1500Å x 24mm + 0Å x 16mm)/40mm = 900Å
	• SHAvg = (0Å x 24mm + -5000Å x 16mm)/40mm = -2000Å


	Layout Extraction: Line Width and Length for Random Layout
	Line Width: shorter dimension; Line Length: longer dimension
	Polygons: cut into rectangles and apply the same definition

	Example Grid Cell and Layout Extraction Result
	Min. W
	1.5mm
	Avg. W
	2.182mm
	Max. W
	4mm
	Avg. Length, L
	40mm
	Layout Copper Pattern Density, rc
	60%
	Bin 1: Min_CD < W < 0.35mm
	0 Count
	Bin 2: 0.35mm < W <= 0.5mm
	0 Count
	Bin 3: 0.5mm < W <= 1mm
	0 Count
	Bin 4: 1mm < W <= 2mm
	8 Counts
	Bin 5: 2mm < W <= 5mm
	3 Counts
	Bin 6: 5mm < W <= 10mm
	0 Count
	Bin 7: 10mm < W
	0 Count
	Total Count (of lines in all bins)
	11
	X, Y Location of the Grid Cell
	Xo, Yo
	Use a binning approach to the distribution of line widths
	Gives a count of the number of lines having a line width in each bin of the line width distribution



	Layout Extraction and Simulation Procedure
	Mask discretized into 40 x 40mm cells

	Chip-Scale Prediction and Verification Result: Arbitrary Chip
	Chip-scale prediction is achieved!
	Array height trend is predicted with RMS error of 870 Å
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