Thermal and Mechanical Properties of CMP Pads Containing Embedded Water Soluble Particles

Leslie Charns, Masano Sugiyama and Ara Philipossian

University of Arizona Department of Chemical & Environmental Engineering Tucson, AZ USA

© 2003

Motivation / Outline

- To characterize a novel pad design that incorporates water soluble particles (WSP) embedded in the pad composition as it relates to:
 - Tribology
 - Removal Rate
 - Thermal Analysis
 - Pad Physical Properties
 - Pad Conditioning
- To perform a comparative analysis of concentric grooved pads including:
 - JSR No WSP
 - JSR Standard WSP
 - JSR High WSP
 - JSR Standard WSP Soft
 - Rodel IC-1000

JSR Pad with WSP (new) Controlled Porosity Pad

Rodel IC-1000 (new)

Process of Surface Self Regeneration via WSP

JSR Self-Regenerating Pads with Controlled Porosity

JSR Pad with Std WSP (new)

JSR Pad with Std WSP (used)

Apparatus

Parameter	Scaling Factor	Speedfam-IPEC 472	Rotopol-35
Down Pressure	1	4 psi	4 psi
Platen Speed	Reynolds Number	Relative pad-wafer velocity of 0.5 m per second (30 rpm)	Relative pad-wafer velocity of 0.5 m per second (55 rpm)
Platen Diameter / Wafer Diameter	D _{platen} / D _{wafer}	51 cm / 15 cm	31 cm / <mark>9 cm</mark>
Platen Diameter / Wafer Diameter	D _{platen} / D _{wafer}	51 cm / 20 cm	31 cm / <mark>12 cm</mark>
Slurry Flow Rate	Platen Surface Area	175 cc per minute	65 cc per minute

Apparatus

 $COF = \frac{F_{Shear}}{F_{Normal}}$

Tribology

Stribeck-Gumbel Curve

Lubrication Region

 Grooved pads exhibit boundary lubrication for the entire range of Sommerfeld Numbers tested

Removal Rate

Pressure x Velocity (Pa x A/min)

Removal Rate

- All pads demonstrate a linear relationship with P x u
- The Standard WSP lower matrix hardness pad has the highest removal rate

 $RR = k \times P \times u$

Infrared Temperature Measurement During CMP

- IR camera can measure temperatures of the pad and slurry during the CMP process
 - Bow Wave: Slurry build up at the leading edge of the wafer
 - Bow Wave Temperature: Slurry temperature before it goes under the wafer

35.0°C 34 30 28 26 24 24.0°C

Polish Conditions: 6 PSI & 0.93 meters per second

Polish Time = 3 seconds

Polish Time = 60 seconds

- Temperature increases at the bow wave over a 1-min polish
- Temperature increases on the pad over a 1-min polish

Infrared Temperature Measurement During CMP

Polish Conditions: 2 PSI & 0.31 meters per second

Polish Time = 3 seconds

- Temperature does not increase at the bow wave over a 1-min polish
- Temperature does not increase on the pad over a 1-min polish

Temperature Increase of the Pad During CMP

Standard WSP

IC-1000

Temperature Increase for 1-min Polish

Dynamic Mechanical Analyzer (DMA)

- DMA is used to determine material properties specific to the material's mechanical features (from –115 °C to 180 °C at 3 °C/min)
- Generates results relating to a pad's dynamic moduli including:
 - Storage Modulus: Stiffness
 - Loss Modulus: Energy Dissipation
 - tan δ

 $\tan \delta = \frac{\text{Loss Modulus}}{\text{Storage Modulus}}$

- Glass Transition Temperature (T_g)
 - Evaluated through the loss modulus curve

Dynamic-Mechanical Analyzer (DMA) Output

Storage Modulus

 IC-1000 is more tightly cross-linked than WSF pads

Source:

http://www.me.ust.hk/~mejswu/N CH343/343Thermal-02.pdf

Glass Transition Temperature

Glass Transition Temperature

- T_g: The temperature below which the mechanical properties of an amorphous polymer change from those of a rubber (elastic) to those of a glass (brittle)
- Alpha peak represents T_g (greatest change in modulus at the highest temperature)
- WSP pads exhibit T_g between standard CMP operating temperatures

Secondary Relaxation

- Beta peak represents movements of side chain groups in the polymer
- This is unique to JSR pads

Glass Transition Temperature

Comparison of Storage and Elastic Modulus

- E* = Complex modulus: a measure of the overall resistance to deformation
- E' = Storage modulus: elastic portion of the material
- E" = Loss modulus: describes the dissipation of energy into heat when a material is deformed
- $\tan \delta$ = a measure of the phase angle between E" and E'

■ Storage Modulus ■ Elastic Modulus

$$E^* = E' + iE''$$

$$\tan \delta = \frac{E''}{E'} \to 0$$

$$E^* \approx E$$

The storage modulus does not approximate the elastic modulus

٠

•

JSR pads demonstrate more energy losses to heat than IC-1000

Pad Conditioning Schemes & Removal Rate

Standard WSP

In-Situ:

- There was a decrease in RR at the highest P x u setting (6 PSI x 0.93 m/s)
- Rate constant decreases with higher WSP content
- Ex-Situ:
 - Ex-situ conditioning resolves the anomalous behavior at high Pxu's
 - Higher WSP content does not effect the rate constant

Storage Modulus for New and Used Pads

Storage Modulus for New and Used Pads

- The greatest modulus difference occurs between flat and grooved pads
- There is no obvious difference for new and used WSP grooved pads
- There is no obvious difference for new and used IC-1000 grooved pads

Hardness, WSP Content & RR Constant

- In-Situ: Rate constant decreases as a function of hardness
- Ex-Situ: Rate constant does not have a defined trend with hardness

IC-1000 & FX9 Pads

Future Plans: Permeability Experiment

- Motivation:
 - To estimate the amount of particles dissolved in the pad composition to determine whether pad conditioning is only a surface phenomena for WSP pads
 - Record pH change with time as basic solution dissolves WSP and permeates through the pad
 - SEM cross-section images of pad to determine permeation distance if no pH change is noted

Determining the Dissolution Rate of the WSP

- Water Soluble Particles
 - Determine dissolution rates of WSP
 - Determine effect of temperature on WSP
 - Determine effect of pH on WSP

Differential Pressure Profiles with Various Solutes

- White WSP
- Red Table Salt
- Blue Water (no solute)

Conclusions

- Characterized conditioning, tribological and removal rate behavior of WSP pads and compared to IC-1000
 - COF data shows that all grooved pads operate in boundary lubrication in the Stribeck-Gumbel Curve
 - Std WSP Soft pad has the highest removal rate but does not have a higher average COF than the other pads
- Thermal analysis
 - Real time Infrared temperature measurements during CMP demonstrate large transient temperature regions
 - Shear forces cause the pad and slurry to increase in temperature up to 13 °C

• Developed and implemented DMA methods for pad characterization

- Dynamic mechanical analysis show that most JSR pads have a Tg in standard CMP operating temperatures (20 to 40 °C) whereas the CMP performance of JSR pad is by no means inferior to IC-1000
- There is no obvious storage modulus difference for new and used WSP grooved pads in the standard CMP operating temperatures

Acknowledgments

- NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- Tufts University (collaboration & technology exchange)
- Professor Farhang Shadman
- Professor Duane Boning
- Lorenzo Lujan
- John Kelchner
- Scott Olsen
- Deanna King
- JSR Corp. (pad, slurry donation and financial support)
- Rodel (pad donation)
- Arizona State University for Elastic Modulus data

