New Photoresists and Processing Methods for scCO$_2$ Development

Victor Q. Pham, Nelson M. Felix, Jessie Mao, Vladimir Jakubek
Karen Gleason, Christopher K. Ober

Cornell University, Ithaca, NY
Massachusetts Institute of Technology, Boston, MA
Outline

• Background on scCO$_2$ processing
 – Equipment for dissolution studies

Overview

• Positive-tone resist development
 – Silylation
 – *Intrinsic positive-tone*

• Cosolvent addition for enhanced solubility of novel resist materials
 – scCO$_2$ development of EUV resist
 – HFCVD patterning and processing (MIT collaboration)

• *Non-fluorinated scCO$_2$ developable resist*
Advantages of scCO\textsubscript{2} and Industrial Applications

- Photoresist and etch residue removal
 - Post metal etch
 - Post oxide etch
- Post-ash cleaning
- FEOL residue removal
- K-value restoration
- MEMs non-stiction drying
- Post CMP cleaning

Desirable Properties
- Liquid-like and variable density
- Gas-like diffusivity & viscosity
 - Penetrates crevices
 - High rate of development
- Strong quadrupole moment
 - Dissolves fluorinated polymers (193nm, 157nm)
- No surface tension
 - Eliminates pattern collapse in dense, high aspect ratio features

Environmental benefits
- Gas collected and purified from industrial effluents and not generated
- Reduce water consumption and replace hazardous chemical developers
- Non-flammable, non-toxic, abundant, recyclable
- Modest operating condition

NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing
DRM Equipment

CO₂ source

High pressure pump

Preheat coil

Pressure reading

Temperature reading

Vessel #1

Temperature reading

Pressure & temperature reading

Vessel #2

Pressure & temperature reading

Micro-metering valve

Reflected beam into detector

Laser in

Detector

Laser (632.8nm)
Measurement of Film Dissolution
Principles of Interferometry

Thickness period

\[d_p = \frac{\lambda}{2\left[n_2^2 - n_1^2 \sin^2 \theta_1 \right]^{1/2}} \]

Assumptions:
• Non-swelling
• One optically distinct moving boundary
• Film dissolves at constant rate

scCO\(_2\) development
• Swelling is expected
• Fluid equilibration, swelling, and dissolution occur simultaneously
• Density and refractive index of solvent vary with P, T
• 7/8” thick quartz glass window

NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing
Random Copolymer Dissolution Selectivity

High solubility in CO$_2$

- Time varying rates
- Complete development of film

Low solubility in scCO$_2$

- Very slow rate of dissolution
- Incomplete development
Dissolution Rate and Completeness for THPMA-F$_7$MA

Amplitude of oscillation

\[R_+^o = \left(\frac{n_1 - n_3}{n_1 + n_3} \right)^2 \]
\[R_-^o = \left(\frac{n_1 n_3 - n_2^2}{n_1 n_3 + n_2^2} \right)^2 \]

Thickness period

\[d_p = \frac{\lambda}{2\sqrt{n_2^2 - n_1^2 \sin^2 \theta_1}}^{1/2} \]
Positive-tone scCO$_2$ Developable Resists

I. Put a non-polar group on - Silylation

II. Take a polar group off – Enthalpic, entropic manipulations
DESIRE for Positive-tone CO₂ Development

Insoluble in CO₂

Soluble in CO₂

THPMA-b-F7MA

hv

H+ Chemical Amplification

SCCO₂

HMDS

hv Flood expose

Negative tone

Positive tone

NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing
Contrasting Feature Profiles – from Negative-tone to Positive

Profilometer Plots of Patterns

*TMDS – Tetramethyl disilazane
Depth of Silylation Reaction

- TMDS, more mobile and more polar than HMDS, offers greater vertical diffusion in more polar exposed regions
Silylated Positive-tone \text{scCO}_2\text{ Developed Resist}

Negative-tone features \textasciitilde100nm
Can we achieve positive-tone for block copolymers?

Sundararajan, Ph.D.
V. Pham
Intrinsic Positive-tone Resist for scCO$_2$

Patterning with 248nm and E-beam demonstrated

Synthesized:
Polymer A191 (x = 40, y = 60, feed ratio)
Polymer A192 (x = 60, y = 40, feed ratio)
Positive Tone scCO$_2$ Photoresist Systems

$\text{hv, } H^+$

NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing
CO$_2$ – Cosolvent – Polymer Interactions

Peter Nguyen
Nelson Felix
Victor Pham

scCO$_2$

scCO$_2$ + PPA

scCO$_2$ + PPA + CH$_2$Cl$_2$

NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing
Effect of Cosolvents with \(\text{scCO}_2\)

- Negative tone EUV resist
- Insoluble in pure supercritical \(\text{CO}_2\)
- Soluble in \(\text{scCO}_2\) when cosolvents are added to supercritical fluid.

Poly(chloromethylstyrene-co-trimethylsilylstyrene)

\[
\begin{align*}
\text{CH}_2 & - \text{CH} & \text{CH} & - \text{CH} \\
\text{H}_3 \text{C} & - \text{Si} & - \text{CH}_3 \\
\text{CH}_3 \\
\text{CH}_2 \text{Cl} & \text{CH}_3
\end{align*}
\]

\(m = 90, n = 10\)

- \(P = 5000\) psi, \(T = 45^\circ\text{C}\), \(t = 10\) mins

<table>
<thead>
<tr>
<th>Organic Solvent</th>
<th>Amount Added</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrahydrofuran (THF) (10 min)</td>
<td>2 vol%</td>
<td>Film removed</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF) (5 min)</td>
<td>2 vol%</td>
<td>Film removed</td>
</tr>
<tr>
<td>Tetrahydrofuran (THF) (1 min)</td>
<td>2 vol%</td>
<td>Film removed</td>
</tr>
<tr>
<td>Isopropanol (IPA) (10 min)</td>
<td>6 vol%</td>
<td>Film removed</td>
</tr>
<tr>
<td>Isopropanol (IPA) (10 min)</td>
<td>2 vol%</td>
<td>Clouding of film</td>
</tr>
<tr>
<td>Ethanol (EtOH) (10 min)</td>
<td>2 vol%</td>
<td>No effect</td>
</tr>
<tr>
<td>Methanol (MeOH) (10 min)</td>
<td>2 vol%</td>
<td>No effect</td>
</tr>
</tbody>
</table>
E-beam resists deposited by CVD

- A negative-tone e-beam resist, glycidyl methacrylate (GMA), deposited by hot filament CVD at MIT (Gleason Group).
- GMA block insoluble in scCO$_2$, fluorinated repeat unit (FAA) added to form a block copolymer soluble in scCO$_2$.

Low FAA content (37%): soluble in 2% ethanol/ scCO$_2$ or 2% THF/ scCO$_2$

High FAA content (65%): scCO$_2$ soluble

NSF/SRC ERC for Environmentally Benign Semiconductor Manufacturing
Non-fluorinated Resist for scCO$_2$

Molecular glass as resist for low LER

248 nm exposure
Developed in CO$_2$ at ~1000 psi, 40°C
Summary

- Dissolution rate measurement
- Positive-tone resist development
 - Silylation
 - Intrinsic positive-tone
- Experimental and theoretical work on cosolvent addition for development and cleaning
 - \(\text{scCO}_2 \) development of EUV resist
 - HFCVD patterning and processing
- Non-fluorinated resist systems
Acknowledgement

- Semiconductor Research Corporation
- NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- Cornell Nanofabrication Facility (CNF)
- Cornell Center for Materials Research (CCMR)
- Gleason Research Group (MIT)
- IBM Research Center
- Praxair