Novel Deposition Processes for High-*k* Gate Stacks on Silicon and Germanium Substrates

Paul C. McIntyre

Department of Materials Science and Engineering Stanford University, Stanford, CA, USA

Acknowledgements –

- David Chi, Hyoungsub Kim, Chi-On Chui, Shriram Ramanathan, Raghav Sreenivasan
- Prof.'s K. Saraswat, B. Triplett and M. Kelly, Stanford University

Financial Support -

- NSF Division of Materials Research
- Applied Materials
- NSF/SRC Center for Environmentally Benign Semiconductor Manufacturing
- Mayfield Group Stanford Graduate Fellowship
- IBM Faculty Award

CEBSM Teleconference

Sept 18, 2003

Outline

- Motivation and background
- Low thermal budget routes to high-*k* dielectric/semiconductor structures
 - UV-ozone oxidation (UVO) of ultra thin metal precursor layers
 - Atomic layer deposition (ALD)
- ALD as a tool for gate workfunction engineering
- UVO processing of ZrO₂ gate dielectric on Ge (100) substrates
 - Summary of electrical data from Pt/ZrO₂/Ge PMOSFET's
 - Microstructure and interface abruptness
- ALD of ZrO₂ and HfO₂ on Ge (100) substrates - *Microstructure and dielectric/Ge interface*
- Conclusions

Future Device Technology

Physical Limits of SiO₂ Gate Dielectrics

• EELS O-K edge spectra recorded point by point across a gate stack containing a thin gate oxide.

D. A. Muller et. al., Nature, 399, 758-761 (1999)

• Bulk SiO₂ properties (e.g. large bandgap) lost for films \leq 8 Å in thickness

Gate Dielectric Technology Evolution

Desirable High-k Gate Dielectric Properties

Material Properties	Electrical Properties
κ > 15; uniform	Equivalent T _{ox} < 1 nm
Thermally stable on Si (no need for barrier layer)	Low leakage current at the same equivalent T _{ox}
No reaction with electrode (stop B penetration if poly-Si)	No mobility degradation (low interface trap density)

Material	SiO ₂	ZrO ₂ /HfO ₂	Silicate (Zr,Hf)
Dielectric Constant	3.9	~25	15 ~ 25
Band Gap (eV)	8.9	~5.7	~6

Ref.) Beyers et.al, J.Appl.Phys., 56, 147(1984)

Outline

- Motivation and background
- Low thermal budget routes to high-*k* dielectric/semiconductor structures
 - UV-ozone oxidation (UVO) of ultra thin metal precursor layers
 - Atomic layer deposition (ALD)
- ALD as a tool for gate workfunction engineering
- UVO processing of ZrO₂ gate dielectric on Ge (100) substrates
 - Summary of electrical data from Pt/ZrO₂/Ge PMOSFET's
 - Microstructure and interface abruptness
- ALD of ZrO₂ and HfO₂ on Ge (100) substrates - *Microstructure and dielectric/Ge interface*
- Conclusions

Growth of Metal Oxide Dielectrics: UV-Ozone Oxidation

UV light supplies atomic oxygen and ozone to surface through the following reactions:

$$O_{2} + hv' \longrightarrow 2O$$
$$O + O_{2} \longrightarrow O_{3}$$
$$O_{3} + hv'' \longrightarrow O_{2} + O$$

Benefits

- Low temperature
- No contamination
- Process simplicity

S. Ramanthan et al., APL 2001

UVO Metal Oxide Processing on a SiO₂ Surface

 Because a metal precursor is deposited onto the substrate before the oxidation, an opportunity exists for reaction between the precursor and the substrate.

•XPS spectra of the Si 2p peak indicate a change in the chemical state of the SiO₂ present as native oxide on the substrate.

Si 2p Si^2p Zr/SiO2/Si UVO Hf/SiO2/S UVO Zr/SiO2/Si chemical oxide chemical oxide 10 Å Hf 10 Å Zr precursor precursor Δ_{ZrSiO} $\Delta_{\rm HfSiO}$ 106 102 100 98 104 106 104 102 100 98 binding energy binding energy (eV) $\Delta_{\text{Zr-Si-O}} = 0.64 \text{ eV}$ $\Delta_{\text{Hf-Si-O}} = 1.04 \text{ eV}$

> Change in free energy for the oxidation reaction $M_x + O_2 \rightarrow M_xO_2$ where M is a metal

 Both hafnium and zirconium have greater oxygen affinities than Si and have a tendency to reduce SiO₂. through solid state reaction.

	Zr	Hf	Si
ΔH°	-1089	-1222	-910
	kJ/mol	kJ/mol	kJ/mol

UVO Metal Oxide Processing on a Si (100) Surface

 Deposition on bare Si leads to silicidation reaction as evidenced by Hf 4f XPS spectra

Silicide does not oxidize during UV-ozone processing

 Presence of metallic phase at high-k/Si interface is not desirable for device applications

High-*k* / SiO₂ Gate Stack Grown *in-situ* by UV-Ozone Oxidation at 300 K

- Electrical properties are measured using MOS capacitors
- Metal electrodes are deposited *in situ* on the oxide preventing oxidation in atmosphere and incorporation of contaminants

Dielectric Behavior: Oxygen Stoichiometry Effects

Quantitative EELS Analysis: Partial Oxidation

ALD (Atomic Layer Deposition)

ALD ZrO₂ / Chemical Oxide Gate Stacks

- By using a chemical oxide passivation, EOT value of 1.2 nm with a leakage of $\sim 10^{-6}$ A/cm² at $|V_G-V_{FB}| = 1$ V was achieved
- ZrO₂ thickness dependence of capacitance indicated $\kappa_{ZrO_2} \sim 26$, as expected
- Suggested 1.3 nm thick amorphous interface layer was not bulk-like SiO_2

C.M. Perkins et al., APL 2001

Experimental Conditions

Deposition system

Deposition parameters

- Process temperature : $300^{\circ}C$
- Process pressure : 0.5 Torr
- Source temperature : H_2O (liquid) = R.T. $ZrCl_4/HfCl_4$ (solid) = 150°C

In-Situ Crystallization Kinetics of ALD-HfO₂

- In-situ anneal at 520°C using 30Å HfO₂ on 25Å thermal SiO₂.
- Preliminary analysis shows 2-D (radial) growth with decreasing nucleation rate.

Avrami isothermal transformation kinetics: F=1-exp(-(kt)ⁿ) n~2.2

Effects of HfO₂ Crystallization on Electrical Properties (Thick Interfacial Oxide)

- Sample structure : 3nm HfO₂ on 2.5nm SiO₂.
- After 700°C, capacitance decreases due to the interfacial oxide growth. *
- There was no significant increase in trap assisted tunneling leakage current resulting from crystallization.
 H. Kim et al., APL, 2003
- * Reagent-grade N_2 ambient contains ~ 1 ppm O_2 .

Effects of HfO₂ Crystallization on Electrical Properties (*In-situ* Annealing w/o interfacial oxide growth)

In-situ annealing after ALD-HfO₂ deposition to minimize interfacial oxide growth : 530 °C, 1.3Torr with 500 sccm N₂ flow

Outline

- Motivation and background
- Low thermal budget routes to high-*k* dielectric/semiconductor structures
 - UV-ozone oxidation (UVO) of ultra thin metal precursor layers
 - Atomic layer deposition (ALD)
- ALD as a tool for gate workfunction engineering
- UVO processing of ZrO₂ gate dielectric on Ge (100) substrates
 - Summary of electrical data from Pt/ZrO₂/Ge PMOSFET's
 - Microstructure and interface abruptness
- ALD of ZrO₂ and HfO₂ on Ge (100) substrates - *Microstructure and dielectric/Ge interface*
- Conclusions

Current Technology: Poly-Si Gates

Advantages of Poly-Si:

- Self-aligned gate
- High thermal stability
- Excellent control over gate workfunction
- Single step operation
- Compatibility with gate oxide
- Ease of fabrication

Band Diagram of an MOS Structure

Schematic of the band diagram of a MOSFET

Electrical Workfunctions of Metallic Elements

Workfunction Engineering

Workfunction of Metals and Metal Nitrides:

Suita	ble for NMOS:
1.	Ti (4.33)
2.	Al (4.08)
3.	n+ poly (4.17)
4.	Mn (4.1)

- **5. Ta** (4.25)
- **6. V** (4.3)
- **7. Zn** (4.33)

6. p+ poly (5.17)

7. Mo (4.6)

Our Focus: Ta - NMOS TaN - PMOS

(values in brackets are workfn in eV)

Our Goal

- Grow the high-k gate oxides by ALD using the Zr/Hf precursor
- In-situ gate deposition using tantalum precursor
- Deposit a thick, low resistivity metal layer to reduce the overall resistance of gate stack

ALD of Metal Thin Films – from Ta Liners to Ta - Based Gate Electrodes?

RF plasma ALD system for deposition of metal diffusion barrier liners for damascene Cu interconnect structures [*Rossnagel et al.* JVST B **18**(4) 2016 (2001)].

600 nm

- Ta and TaN have appropriate workfunctions for CMOS gate electrodes
- In deeply scaled, fully-depleted channel devices, gate electrode workfunction will control device threshold voltage, rather than implanted channel dopant
- ALD may provide the needed capability to grow very thin metal layers with controlled workfunction on the gate stack

Outline

- Motivation and background
- Low thermal budget routes to high-*k* dielectric/semiconductor structures
 - UV-ozone oxidation (UVO) of ultra thin metal precursor layers
 - Atomic layer deposition (ALD)
- ALD as a tool for gate workfunction engineering
- UVO processing of ZrO₂ gate dielectric on Ge (100) substrates
 - Summary of electrical data from Pt/ZrO₂/Ge PMOSFET's
 - Microstructure and interface abruptness
- ALD of ZrO₂ and HfO₂ on Ge (100) substrates - *Microstructure and dielectric/Ge interface*
- Conclusions

Benefits of Ge Substrates

Electronic Properties:

- More symmetric and higher carrier mobilities (low-field)
 - ⇒ More efficient source injection
 - (due to lighter m^*)
 - $\Rightarrow \downarrow \text{CMOS}$ gate delay
- Smaller energy bandgap \Rightarrow Survives V_{DD} scaling $\Rightarrow \downarrow R$ with \downarrow barrier height
- Lower temperature processing ⇒ Compatible w/ 3D Integration

(Sze, Phys. of Semicond. Devs. 2nd Ed., p.46, 1981)

Better performance may result from combining high-k gate dielectric and Ge substrate.

ZrO₂ on Si & Ge: Thermodynamic Considerations

Ref.) Beyers et.al, J.Appl.Phys. 56, 147(1984)

- Although there is less available thermodynamic data for Ge compounds, phase equilibria are expected to be similar to Si case.
- GeO₂ is much less stable than is SiO₂ in the presence of Zr, Hf, and O₂.

 $\Delta G^{\circ}_{f}(GeO_{2}) = -610 \text{ (kJ/mol)}$ $\Delta G^{\circ}_{f}(SiO_{2}) = -921 \text{ (kJ/mol)} @600\text{ K}$

- 1. $GeO_2 + Zr = Ge + ZrO_2$ (T=600K)
 - $\Delta G^{\circ} = -520 \text{ kJ/mole}$
- \rightarrow Zr-GeO₂ tie line cannot exist.
- 2. Formation energy of ZrO_2 is very large [$\Delta G^{\circ}(ZrO_2) = -1135 \text{ kJ/mole}$]
 - \rightarrow Tie lines tend to emanate from ZrO₂

Ge-Channel High-k Devices

Surface Cleaning and Stability of GeO_x

 Compared to thermally grown GeO₂, the native oxide also includes a Gesuboxide component (GeO_x)

- Common hexagonal phase of GeO₂ is water soluble and volatile
- H₂O removes GeO₂ but not GeO

Stability of Ge-oxide

 GeO_x can be removed at T > 430°C in vacuum

UVO ZrO₂/Ge Interface Structure

Determined standard spectra for a) sputter etched Ge, b) native Ge oxide, c) and UVO Ge oxide

- compared to 3p spectra obtained from ZrO₂/Ge samples

XTEM of functioning high-*k* MOSFET

Calibrated take-off angles by measuring attenuation of Ge substrate peak for known overlayer thickness

Ge 3p Spectra for Different Angles

ARXPS Depth Profiles: ZrO₂/Ge Interface

If precursor thickness/oxidation time is optimized, UVO gate stacks can be prepared on Ge with essentially no IL

Outline

- Motivation and background
- Low thermal budget routes to high-*k* dielectric/semiconductor structures
 - UV-ozone oxidation (UVO) of ultra thin metal precursor layers
 - Atomic layer deposition (ALD)
- ALD as a tool for gate workfunction engineering
- UVO processing of ZrO₂ gate dielectric on Ge (100) substrates
 - Summary of electrical data from Pt/ZrO₂/Ge PMOSFET's
 - Microstructure and interface abruptness
- ALD of ZrO₂ and HfO₂ on Ge (100) substrates
 Microstructure and dielectric/Ge interface
- Conclusions

ALD-ZrO₂ on HF-last Ge Substrate

- ALD ZrO₂ (~ 55 Å thick) was grown on vapor HF cleaned Ge
- No interfacial layer detected; local epitaxial growth observed
- One interfacial dislocation per every ten (111) planes: consistent with substantial relaxation of biaxial misfit strain
 H. Kim et a

- lattice mismatch between ZrO₂ and Ge (~10 %).

H. Kim et al. APL, accepted

XPS Analysis of ALD ZrO₂ on Ge

- Interfacial GeO_x is observed in thin ZrO₂ sample, appears to form by oxidation after air exposure of the uncapped ZrO₂ film
- No detectable interfacial oxide can be seen beneath thick ZrO₂

C-V Characteristics of ALD-ZrO₂ on Ge

- EOT approximated from 10kHz CV data
- Large frequency dispersion creates uncertainty in precise EOT value
- Hysteresis and frequency dispersion may be caused by disorder at the ZrO₂/Ge interface (dislocations etc.).
- Inversion characteristics suggest increase in minority carrier generation (contamination?).

J-V Characteristics of ALD-ZrO₂ on Ge

- ZrO₂ on Ge samples show a slightly higher leakage current behavior compared to same physical thickness ZrO₂ on Si.
- Significantly lower leakage current than SiO₂ for the same EOT (absence of thick interfacial oxide layer).
- Low leakage current densities are encouraging from standpoint of device applications.

ALD of HfO₂ on Ge NW*

*CVD Ge NW growth courtesy of D. Wang and H. Dai, Stanford U.

- Conformal deposition key attribute of ALD for dielectric passivation of NW surfaces for thin-body FETs
- Evidence that HfO₂ growth from HfCl₄/H₂O precursors on Ge surface is in the true ALD regime

Conclusions

- UVO processing of metal oxide gate dielectrics on SiO₂ from sputtered metal precursors results in a mixed metal oxide-SiO₂ layer
 may contribute to the very low EOT of these gate stacks
- In situ annealing after ALD HfO₂ deposition shows HfO₂ crystallization does not contribute to an increase in leakage current density
- The surface adsorption limited film growth mechanism of ALD provides an opportunity for achieving area selectivity
 we have demonstrated inhibition of HfO₂ ALD onto ODTS-passivated SiO₂
- UV-ozone oxidation of ultra thin Zr films has been used to prepare high-k/Ge PMOSFETs with hole mobilities ~ 2x that achievable in SiO₂/Si devices
- By controlling the metal precursor thickness and oxidation conditions, UVO metal oxide processing can produce essentially interface layer-free gate stacks on Ge
- ALD ZrO₂ on HF-last Ge exhibits local epitaxy (cube-on-cube relationship)
 no interface GeO_x layer detected by XPS or TEM
- Low leakage current densities observed for ALD ZrO₂ on HF-last Ge suggest there is no intrinsic leakage problem for ZrO₂/Ge gate stacks

