Novel Germanium Technology and Devices for High Performance MOSFETs

Chi On Chui

Department of Electrical Engineering, Stanford University, Stanford, California 94305

February 5, 2004

Principal Investigator: Prof. Krishna C. Saraswat Collaborators: Profs. Paul C. McIntyre and Yoshio Nishi

Outline

- Ge CMOS Motivations
- Ge MOS Gate Dielectric Technology
 ⇒ UVO Oxidation of Metal
 ⇒ ALD of Metal Oxides
- Ge Dopant Incorporation Technology
- Ge MOSFETs with High-κ and Metal Gate
- Conclusions

Bulk-Si Performance Trends

- Maintaining historical CMOS performance trend requires new semiconductor material and structures by 2008-2010...
- Earlier if current bulk-Si data do not improve significantly

Page 3

A Fundamental Scaling Limit - I_{Dsat}

I_{Dsat} no longer set by v_{sat}

For very short channel MOSFETs

$$\mathcal{T} = \frac{\boldsymbol{l}_0}{l + \boldsymbol{l}_0}$$

 $I_0 \propto t_0$ ∞ $\mathbf{M}_{low-field}$ $\propto V_{inj}$

(Lundstrom, 2001, Purdue)

(Sze, 1981)

Drive Current & Gate Delay

 $I_{DS} = W \times Q_{inv} \times v_{ini}$

 $\frac{\overline{I_{DS}}}{I_{DS}} = \frac{\overline{(V_{DD} - V_T) \times v_{inj}}}{(V_{DD} - V_T) \times v_{inj}}$

 $\underline{C_{LOAD}V_{DD}} = \underline{L_{gate} \times V_{DD}}$

Ballisticity Comparisons

	Si <100>	Ge <100>	Ge <111>
<i>n</i> -MOS	0.68	0.78	0.76
<i>p</i> -MOS	0.48	0.70	0.56

(Chui et al., IEEE IEDM, 2003)

Chi On Chui

NSF/SRC ERC TeleSeminar (2/5/2004)

Page 4

Germanium – A Material with History

1947

1st Transistor is in Ge

By Bardeen, Brattain, and Shockley, Nobel Laureates in Physics 1956

(http://www.bellsystemmemorial.com/belllabs_transistor.html)

1st Integrated Circuit is in Ge

By Kilby, Nobel Laureates in Physics 2000

(Courtesy of TI and Huff, SEMATECH)

Chi On Chui

Outline

Ge CMOS Motivations

- Ge MOS Gate Dielectric Technology
 ⇒ UVO Oxidation of Metal
 ⇒ ALD of Metal Oxides
- Ge Dopant Incorporation Technology
- · Ge MOSFETs with High-16 and Metal Gate
- · Condusions

Problem #1: Ge Surface Passivation

The Problems:

- The native oxide passivation on Ge surface is not stable enough either during fabrication or in the end-product
 ⇒ GeO₂: water soluble/hygroscopic
 ⇒ GeO : volatile at low temperature
- Very high quality gate dielectric/Ge substrate interface is required

Prior Attempts in the Last 40 Years:

- Pyrolytic, LPCVD, RPECVD SiO₂
- Thermal, UVO GeO_x (followed by nitridation, GeO_xN_y)
- LPCVD Ge₃N₄ and Pyrolytic Al₂O₃

None of them would likely offer an EOT \leq 10 Å to advance beyond the sub-20 nm regime

⁽Prabhakaran, APL, 2000)

Chi On Chui

High-k Dielectrics on Germanium

The Surface Passivation Solution:

- High-k (metal oxide) dielectrics are being researched to replace SiO₂ for scaled Si MOSFETs
- These dielectrics are deposited on Si, but not thermally grown, why not on Ge?
- Volatility/Instability of native oxides or sub-oxides makes surface cleaning easier for high-k on Ge
- Gate dielectric stack free of the performance limiting, lower- κ , interfacial GeO_x layer could be possible
- Allows integration of metallic gate electrode to eliminate the carrier depletion problem in poly-Si gates

(Chui et al., U.S. Patent Pending (Serial No.: 10/404,876))

Outline

Ge CMOS Motivations

- Ge MOS Gate Dielectric Technology
 ⇒ UVO Oxidation of Metal
 ⇒ ALD of Metal Oxides
- Ge Dopant Incorporation Technology
- · Ge MOSFETs with High-K and Metal Gate
- · Conclusions

Novel Dielectrics by UV-O₃ Oxidation

- Advantages
 - \Rightarrow Low temperature
 - \Rightarrow Low contamination
 - \Rightarrow Process simplicity
 - \Rightarrow *In-situ* electrode capping

(Courtesy of Prof. Paul McIntyre, MSE, Stanford)

UV-O₃ Oxidation of Zr on Ge

(*Best Student Paper Award: Chui et al., IEEE DRC, 2002)

Chi On Chui

NSF/SRC ERC TeleSeminar (2/5/2004)

-2

-1.5

-1

-0.5

0

Gate Voltage (V)

0.5

Page 11

1.5

Electrical & Material Characteristics

The common GeO₂ phase has poor quality

- Hysteresis become negligible in its absence
- Atomically abrupt interface •
- Usually, high-quality interface layer between high-k and Si is required
- High-κ maybe more feasible for Ge MOS • applications

(Chui et al., IEEE EDL, 2002)

(*Best Student Paper Award: Chui et al., IEEE DRC, 2002)

Chi On Chui

SR-PES Spectra of ZrO₂ on Ge

Stanford Synchrotron Radiation Lab BL 8-1 $h\mathbf{n} = 100 \text{ eV}$ Bias = 0 V DKE = 0.05 eV

- \Rightarrow To identify the existence of interfacial GeO_x
- \Rightarrow Upon layer-by-layer wet etching of ZrO₂, composition variation is monitored with PES
- \Rightarrow Little shoulder observed in lower KE side of Ge 3d doublet peak, i.e. interfacial GeO_x

AFM ZrO₂ Surface Roughness

(Å)

2

RMS Roughness

ARXPS and MEIS of ZrO₂ on Ge

Depth Profile Simulations on Experimental ARXPS for Different ZrO₂ Thickness on Ge

(Chi, Chui, Saraswat, Triplett, and McIntyre, submitted to JAP)

MEIS Spectrum and Depth Profile Simulation

24.5Å ZrO₂/3Å GeO/Ge(001) (with Prof. Eric Garfunkel, Chemistry, Rutgers)

Chi On Chui

NSF/SRC ERC TeleSeminar (2/5/2004)

Page 14

Outline

Ge CMOS Motivations

- Ge MOS Gate Dielectric Technology
 ⇒ UVO Oxidation of Metal
 ⇒ ALD of Metal Oxides
- Ge Dopant Incorporation Technology
- · Ge MOSFETs with High-16 and Metal Gate
- · Condusions

Atomic Layer CVD of High-k Dielectrics

Chi On Chui

Effects of Surface Preparation

CHF Ge:

Cyclic rinsing between 50:1 HF and H_2O

• DIW Ge:

Rinsing in DI water

• Thick GeO_xN_y:

Rapid Thermal Nitridation (RTN) of thermally grown GeO₂

 Thin GeO_xN_y: RTN of CHF Ge

(Chui et al., submitted to IEEE EDL)

Chi On Chui

GeO_xN_y Optimization and Stability

Chi On Chui

NSF/SRC ERC TeleSeminar (2/5/2004)

Page 18

Dielectric Stack for MOSFET

(Chui et al., submitted to IEEE EDL)

The dielectric recipe:

- 1) Ge cyclic rinsing between 50:1 HF and H₂O
- 2) RTN in NH_3 at 600°C for 1 min
- ALD of high-κ films at 300°C using MCl₄ precursors

Where Do These New Materials Help?

 $\begin{array}{l}I_{channel} \hspace{0.1cm} \mu \hspace{0.1cm} charge \times source \hspace{0.1cm} \textit{injection velocity} \\ \mu \hspace{0.1cm} (gate \hspace{0.1cm} oxide \hspace{0.1cm} cap \times gate \hspace{0.1cm} overdrive) \times v_{\textit{inj}} \\ \mu \hspace{0.1cm} C_{ox} (V_{GS} - V_{T}) \times E_{source} \times m_{\textit{inj}} \end{array}$

High-ĸ Gate Dielectrics

- \Rightarrow \uparrow gate coupling
- $\Rightarrow \downarrow \text{leakage \&} \\\uparrow \text{reliability (?)}$

⇒ ↓ dopant penetration

Metal Gate Electrode

⇒ ↓ gate poly depletion

⇒ ↓ remote charge scattering High Quality <u>Ge Channel</u>

- $\Rightarrow \uparrow$ mobility
- $\Rightarrow \downarrow \text{ supply } V_{DD} \\ (V_{DD} \text{ scaling})$
- ⇒ ↓ processing temperature

Outline

- Ge CMOS Motivations
- Ge MOS Gate Dielectric Technology
 ⇒ UVO Oxidation of Metal
 ⇒ ALD of Metal Oxides
- Ge Dopant Incorporation Technology
- Ge MOSFETs with High-k and Metal Gate
 Conclusions

Problem # 2: Dopant Incorporation in Ge

The Problems:

Larger *n*-type impurity diffusivities than Si
 ⇒ Shallow junction in Ge NMOS difficult
 ⇒ Unknown diffusion mechanisms

- Relatively lower Solid Solubility Limits (SSL)
 - $\Rightarrow I_{ON}$ limited by source/drain resistance

Prior Attempts in the Last 30 Years:

- *P*-type: Furnace anneal of ion-implanted B ⇒ Not suitable for shallow junction
- N-type: RTA and FA of implanted ions
 Mostly low does and high approximation
 - ⇒ Mostly low dose and high energy implants achieving low level of activation

⁽Dunlap, Phys. Rev., 1954)

P-Type Dopant Incorporation

Conventional Ion Implantation Doping

Chi On Chui

NSF/SRC ERC TeleSeminar (2/5/2004)

Page 24

Solid Source Diffusion from PSG

NSF/SRC ERC TeleSeminar (2/5/2004)

Chi On Chui

Page 25

Outline

- Ge CMOS Motivations
- Ge MOS Gate Dielectric Technology
 ⇒ UVO Oxidation of Metal
 ⇒ ALD of Metal Oxides
- Ge Dopant Incorporation Technology
- Ge MOSFETs with High-κ and Metal Gate
 Conclusions

The Stanford Sub-400°C Germanium *P*-MOSFET Process

(Chui et al., IEEE IEDM, 2002)

Hole Mobility Enhancement with Ge

(Chui et al., IEEE IEDM, 2002)

- \Rightarrow 1st demonstration of metal gate on high- κ on Ge MOSFETs
- ⇒ 2× mobility vs. Si universal mobility
- \Rightarrow 3× mobility vs. Si high- κ *p*-MOSFETs
- ⇒ 400°C maximum temperature process
- ⇒ All the processing were done at Stanford (EE and MSE)

Requirements and Solutions of Metal Gate High-k MOSFET Integration

Integration Requirements:

- Thermal stability of the metal gate high-κ gate stack during conventional self-aligned dopant activation
- Resemblance to the conventional VLSI device structure
- Compatibility with the Si mainline equipment set
- Inclusion of standard isolation together with planar geometry

Present solutions:

Replacement or damascene gate process

⁽Yagishita *et al.*, IEEE *IEDM*, 1998

Page 29

The Novel Self-Aligned Gate-Last Metal Gate High-k MOSFET Process

 5-mask process compatible with the mainline Si fab

(Chui et al., IEEE IEDM, 2003; Chui et al., IEEE ISDRS, 2003)

Ge N-MOSFET Characteristics

Chi On Chui

Process Versatility

(Chui et al., IEEE IEDM, 2003)

- Stringent thermal stability requirement relaxed without the need of the more-involved replacement or damascene process
- Highly selective etch of metal gate vs. high-κ, and high-κ vs. Ge not necessary on the thick LTO buffer
- Lightly-doped drains (LDD) possible with lower wt% PSG inward spacers
- CMOS formation by selective PSG removal followed by blanket BSG
- Elevated source/drains with doped-Ge instead of PSG

Chi On Chui

Outline

Ge CMOS Motivations

- Ge MOS Gate Dielectric Technology
 ⇒ UVO Oxidation of Metal
 ⇒ ALD of Metal Oxides
- Ge Dopant Incorporation Technology
- · Ge MOSFETs with High-16 and Metal Gate
- Conclusions

New Materials for CMOS

Conclusions

- 1st demonstration of Ge MOS capacitors incorporating high-κ gate dielectrics (ZrO₂ & HfO₂) deposited using either UVO or ALD
- 1st demonstration of high Ge surface *p* and *n*type dopings by either ion implantation or solid source diffusion
- 1st demonstration of Ge *p* and *n*-MOSFETs with high-κ gate dielectrics and metal gate down to 1-2 μm channel length
- Future work in the areas of Ge surface cleaning, passivation, and dopant activation

Chi On Chui

List of Related References

- C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, "Ultrathin High-k Gate Dielectric Technology for Germanium MOS Applications," *IEEE 60th Annual Device Research Conference (DRC) Digest*, Paper VII.B-2, pp. 191-192, Santa Barbara, CA, June 24-26, 2002. (Best Student Paper Award)
- [2] C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, "Germanium MOS Capacitors Incorporating Ultrathin High-k Gate Dielectric," *IEEE Electron Device Lett.*, vol. 23, no. 8, pp. 473-475, 2002.
- [3] C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, "A Sub-400°C Germanium MOSFET Technology with High-k Dielectric and Metal Gate," *IEEE International Electron Devices Meeting (IEDM) 2002 Technical Digest*, Paper 17.3, pp. 437-440, San Francisco, CA, December 8-11, 2002.
- [4] H. Kim, P. C. McIntyre, C. O. Chui, and K. C. Saraswat, "Atomic Layer Deposition of ZrO2 on Si and Ge Substrate," *MRS 2003 Spring Meeting, Symposium on High-k Dielectrics*, Paper D2.11, San Francisco, CA, April 21-25, 2003.
- [5] D. Chi, B. B. Triplett, P. C. McIntyre, C. O. Chui, K. C. Saraswat, E. Garfunkel, and T. Gustafsson, "High-k Metal Oxides Dielectrics on Ge (100) Substrates," *MRS 2003 Spring Meeting, Symposium on Advanced Gate Stack Materials*, Paper D3.17, San Francisco, CA, April 21-25, 2003.
- [6] K. C. Saraswat, C. O. Chui, P. C. McIntyre, and B. B. Triplett, "Novel Ge Devices with High-k Dielectrics: High Performance MOSFETs and Optical Receivers," *The 203rd Spring Meeting of ECS*, Paper G1-0445, Paris, France, April 27-May 2, 2003. (Invited)
- [7] D. Chi, C. O. Chui, S. Ramanathan, B. B. Triplett, K. C. Saraswat, and P. C. McIntyre, "UV-Ozone Oxidized High-k Dielectrics on Si and Ge Substrates," *The 45th TMS Electronic Materials Conference (EMC) Digest*, Paper S5, Salt Lake City, UT, June 25-27, 2003.

Chi On Chui

References and Acknowledgements

- [8] H. Kim, C. O. Chui, K. C. Saraswat, and P. C. McIntyre, "Local Epitaxial Growth of ZrO2 on Ge (100) Substrates by Atomic Layer Epitaxy," *Appl. Phys. Lett.*, vol. 83, no. 13, pp. 2647-2649, 2003.
- [9] C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and Diffusion Studies of Ion-implanted *p* and *n* Dopants in Germanium," *Appl. Phys. Lett.*, vol. 83, no. 16, pp. 3275-3277, 2003.
- [10] C. O. Chui, H. Kim, P. C. McIntyre, and K. C. Saraswat, "A Germanium NMOSFET Process Integrating Metal Gate and Improved Hi-k Dielectrics," *IEEE International Electron Devices Meeting* (*IEDM*) 2003 Technical Digest, Paper 18.3, pp. 437-440, Washington, DC, December 7-10, 2003.
- [11] C. O. Chui, H. Kim, J. P. McVittie, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, "A Novel Selfaligned Gate-last MOSFET Process Comparing the High-k Candidates," *IEEE 2003 International Semiconductor Device Research Symposium (ISDRS) Proceedings*, Paper FA6-05, pp. 464-465, Washington, DC, December 10-12, 2003.

Acknowledgements:

- Profs. Krishna C. Saraswat, Paul C. McIntyre, and Yoshio Nishi
- Staff from Stanford Nanofabrication Facility (SNF), Ginzton Laboratory, and Geballe Laboratory for Advanced Materials (LAM) throughout the research
- Fundings from DARPA, MARCO, and Intel Foundation PhD Fellowship