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Critical Manufacturing of Interfaces

« Pre-gate oxide wafer surface preparation is critical to IC fabrication

« Aqueous F-based chemistries used to terminate Si surface bonds
with H

— Protects against contamination and oxidation
— < 2 hour staging times limit contamination

* Duplicate cleans to maintain yield

— Cost in terms of water,chemicals,
energy, and time

— CD loss

Si(100) 3x1 Rearrangement

http://www-mtl.mit.edu/6152j/sop/oxide.html



Environmental Impact

» A fab uses millions of * Electrical power use
gallons of water a day — House uses 1-2 W/ft?

e 1 Ch|p =10 ga”ons of — Office Building uses 6-10 W/ft?
water — Factory uses 20-50 W/ft2

: — Fab uses 350-375 W/ft2
« Wafer cleaning ~25% of y .
« Air handling ~13% of total

the total water usage

'

» Decreasing filter requirement

from Class 1 would provide
Gas phase processing savings

can improve material [ [Electricity Savings |
o
usage efficiency by

. Class 10,000 w/
10-100 times

* Peak electricity numbers, average demand would be ~70% of the listed value.
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Surface Passivation Strategies

Organic Surface Passivation of Silicon
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Alkene and alkyne addition

—Buriak, J. Am. Chem. Soc., (121) 1999
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Alkyl-Grignard & alkyl-lithium reagents
—Bansal, J. Phys. Chem. B, (105) 2001

.Cl
R/\

\Cl HCI cl HCI/

Sl—Sl—Sl—Sl—Sl—Sl

Pyrolysis of diacyl peroxides
—Linford, J. Am. Chem. Soc., (115) 1993
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—Chen, Chem. Mater., (17) 2005 Cll
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« Aldehyde addition
—Boukherroub, Langmuir, (16) 2000
— Effenberger, Angew. Chem. Int. Ed., 37(18) 1998
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 Alcohol substitution
—Boukherroub, Langmuir, (16) 2000
—Haber, J. Phys. Chem. B, (104) 2000
—Mo, ECS Proceedings, (99-36) 1999
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Surface Passivation Strategies

CH, CH,
Alkoxy 6 6
. . 0 . | |
Termination Termination
 Si-C linkage is more stable than » Si-O-C bond is less likely to
Si-O-C result in silicon carbide

formation upon heating

Short Chain Long Chain
SN P Y
» Smaller physical barrier to » Large physical barrier to
reaction reaction
« Higher volatility components * Low volatility
—Gas phase synthesis —Liquid phase synthesis

_Gas phase thermal desorption —Difficulties in removing layer

Si—Si—Si=Si




Methoxy Termination

 Rationale for alternatives

— H presents poor steric barrier to Si
surface atoms

* Methoxy (-OCH;) acts like an
“‘umbrella” and provides a better
steric barrier for Si surface atoms

« Methoxy passivation demonstrated
using liquid solutions

i 4
e .lU )

« Develop gas phase process
— Decrease water/chemical usage

— Compatible with current IC processing
technology (clustered reactors)
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Reactions of Methanol with Silicon

« Thermal reaction of MeOH with Si is slow
— Reaction occurs first on defects and step edges
» Most reactive sites

« Higher coverages achieved through oxidative activation
— lodine activation !2

« Conversion to gas phase
— Light activated iodine adsorption
— Methanol substitution reaction

« Goal: to increase methoxy
coverage and improve surface
passivation

Mo, Burr, and Chidsey et. Al. Atomic-Scale Mechanistic Study of lodine/
Alcohol Passivated Si(100). Electrochemical Society Proceedings Vol. 99-36




Clustered Reactor Apparatus

Photochemistry
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» A vacuum cluster tool provides a clean environment for multi-step
processing

» Improved surface passivation can protect the substrate upon removal from

the system g



Surface Preparation Procedure
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lodine Termination
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Methoxy Termination
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Methoxy termination detected via a shift in the C(1s) peak of the XPS spectrum
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Methoxy Termination

Coverage Post Methanol Exposure (ML)

« Parametric investigation
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Tyeon (25 -135°C)

Pueon (12.5 - 50 Torr)

lodine coverage (0.05 - 0.30 ML)
Si(100) and Si(111)

Carbon Coverage vs. Temperature with
Methanol Exposure on Si(111)

® Si(111)MeOH only
H Si(111) UV-I,/MeOH
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Methanol Dosing Temperature (°C)

Coverage Post Methanol Exposure (ML)

 Maximum methoxy coverage

— UV-I, prepared surface
— MeOH exposure of 45-65°C or 120°C
— No difference in crystal face
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Electrical Testing Procedure

CH, CH,

e
mmmm

Electrical Testing

Interface and
device quality test

Y
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Thermal
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Build
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Aging Experiments

CH, CH, CH,
H H O O e

Change in Coverage Due to Aging (ML)

Carbon - 141 Oxygen
=
o 121 |-® Standard Wet Clean —
0.6 [~ | - Standard Wet Clean 7] £ —A— Methanol Exposed
—&— Methanol Exposure <CD —— UV-I,Methanol Exposed
—o— UV-I,Methanol Exposure o 10+ —
2
A o8t _
0.4 °
(®)]
©
S 061+ =
3
O
0.2 e 04r B
(O]
(@)
S 02+ =
e
O
0.0 1 | | 0.0 ' 1 | | -
0.1 1 10 100 1000 0.1 1 10 100 1000
Time in Ambient (min) Time in Ambient (min)
— 30-60% reduction in C — 950-70% less oxidation within 10 hours

— 10-35% less oxidation after 10 days y



Change in Coverage Due to Aging (ML)

Aging Experiments — Carbon Coverage
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« Performance of three passivation
approaches consistent across crystal
faces and aging conditions

MeOH Exposed Silicon

—— Dark Si(100)
—A— Light Si(100)
—A— Dark Si(111)
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Si(111) samples had highest C coverage

Si(100) samples aged with exposure to light
had lowest C coverage
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Capacitance-Voltage Measurements

Normalized Capacitance
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Summary of Electrical Measurement Results

D;; % Change

Qox % Change

Dit Qox
- 1. | compared to - compared to
Cem=ev)| | meon [ €M) 1,/MeOH
H terminated 1.9E+11 224% 3.1E+11 98%
MeQOH-only 6.7E+10 16% 2.8E+11 79%
I,/MeOH 5.8E+10 0% 1.6E+11 0%

INTERFACE TRAPPED 'y

).O

DUE TO

CHARGES N MEASURED C-V CURVE
IDEAL C-V CURVE ™ &

L.

=V

Interface traps spread the
depletion region in a C-V
curve

Methoxy-termination
maintained a higher Si/SiO,
interface quality with
exposure to air

In the range of industrial
device defect densities

(10° - 10" cm-?)
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Summary and Conclusions

« Methods for gas phase methoxy passivation have been demonstrated
— Decreased chemical usage

— Compatible with current IC processing technology

» Methoxy passivates Si better than hydrogen atoms
— |,/MeOH processing provides the best protection against oxidation over time

» Electrical testing indicates no adverse effects on device performance from adsorbed
species

«  Ultility:
— Pre-deposition surface quality preservation strategy
— Passivation for transfer between gas phase cluster tools
— Protection for additive processing

» Potential to improve device yield and decrease process
bottlenecking

* Potential to reduce environmental impact of processing
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