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Motivation
• In copper CMP, in-situ detection of barrier to dielectric layer transition is    

typically done using reflectivity measurements. Use of carbon containing 
low-k materials for dielectric layers have opened up the possibility of using 
spectroscopic techniques for detection of transition

• Information on chemical reactions  between slurry and the wafer is usually 
obtained by analyzing the slurry waste collected from the pad; such a 
method may miss short lived intermediates. Slurry constituents and reaction 
products may have unique signatures that can be detected by spectroscopic 
techniques.

• Since CMP is carried out in aqueous media , infrared (IR) spectroscopic 
technique is not very desirable due to interference from strong water signal.

Objective of this work
To develop a Raman spectroscopy based technique to   
monitor metal CMP processes, in-situ.
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Materials
SiLK  :   1500 Å SiLK on Si substrate

(highly crosslinked polyphenylene polymer)
CDO-I:   10,000 Å -thick carbon-doped oxide 

(CDO) film on Si substrate (source I).
CDO-II:  5,000 Å -thick CDO film on Si substrate  

(source II).
(Different alkyl siloxane precursors were used in
the deposition of CDO-I and CDO-II)

Ta:          250 Å Ta on CDO-I & CDO-II



Raman Spectroscopy
Raman spectroscopy is a well-established 

technique that provides information on 
the vibrational frequencies of molecules 
from regions as small as 1 cubic 
micrometer.

Scattered radiation, resulting from incident 
laser light of frequency vo, is of two 
types:
Rayleigh (NO frequency change, strong)
Raman (Frequency change, weak)
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Raman vs IR spectroscopy

• Since water is a weak Raman scatterer, Raman spectra of sample in 
aqueous solution can be obtained without major interference from water 
vibrations. In contrast IR spectroscopy suffers from strong absorption of 
water.
– . Raman spectroscopy depends on polarizability 
– . IR spectroscopy depends on dipole moment  

• A small sample size is adequate to obtain Raman spectra. This is a great 
advantage over conventional IR when only a small quantity of sample is 
available.

J.R.Ferraro, K. Nakamoto, and C.W.Brown, Introductory Raman Spectroscopy, second Ed, 

Academic press, 2003.



Static Raman Setup
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SiLK spectra in Air and Water
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• Source:Diode Laser at 784.85nm
• Power:  ~290 mW
• Confocal Hole = 300 µm
• Spectrometer Slit = 100 µm
• Collection Time:  ~15 s
• Equipment : LabRam

Thickness of water layer: ~2mm

__ in Air

__in H2O

•Peaks due to the aromatic vibrations in SiLK appeared even in water medium, 
but less intense than those obtained in air.

•Peak intensity would be higher during CMP as the slurry thickness is much 
lower (~20 microns)



Raman spectra of CDO-I 

• Strong peak at 2911 cm-1 and a 
shoulder peak at 2972 cm-1 are 
due the symmetric vibrations of 
C-H bond in CH3 and CH2
groups respectively.

• Same peaks observed in CDO-II.
• Increase in peak intensity with 

increase in laser power.
• Fluorescence was observed in 

CDO-I samples.
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Additional Characterization of CDO 
Films

•Fluorescence

•Presence of liquid media

•Thickness of CDO layer



Fluorescence
• Fluorescence was observed 

when one type of CDO 
sample was exposed to the 
laser, and it eventually 
decreased with time.

Fluorescence vs Time.

(Data points are the highest 
peak points in every 
spectrum taken at equal 
intervals of time).
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Study on Fluorescence

• FTIR spectra, before and after, 
were checked to make sure 
there is no chemical change in 
the sample due to the quenching 
of fluorescence.

• No marked change in the 
peak height was observed as 
the fluorescence decreased 
with the time.
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Effect of liquid layer (slurry)
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Effect of thickness on Raman intensity

• CDO thickness was decreased by etching the samples in 9.8%HF.
• Thickness measurements were performed using ellipsometer.
• Correlation between CDO peak intensity and thickness.
• This was also confirmed by performing CMP on CDO-I samples.
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End Point Detection



Raman monitoring of barrier layer 
breakthrough (using CDO peak)

• Samples: 20 nm Ta coated on 
CDO-I

• Ta layer thinned  by etching in  KOH
• Evolution of CDO peak as Ta 

overlayer is thinned
• Over etching (after Ta overlayer 

removal) resulted in decrease in CDO 
peak intensity
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Raman vs. Reflectivity measurement
(using Si peak)

• Samples: 20 nm Ta coated on 
CDO-I.

• Raman Technique:
Evolution of Si peak (bottom) as 
Ta overlayer is etched away.  
Exponential increase in Si peak 
intensity ; VERY SENSITIVE

• Monotonic linear decrease of  
signal  in reflectance technique. 

Comparison of Ta to CDO transition using 
reflection and Raman (Si peak at 520 cm-1) 
techniques.

Silicon substrate
CDO ~10,000 A200 A 

Ta

0

5000

10000

15000

20000

25000

-50 0 50 100 150 200 250
Ta thickness (A)

R
am

an
 p

ea
k 

ar
ea

0

0.5

1

1.5

2

2.5

3

3.5

R
eflectivity

Raman

Reflectivity

Ar 514.5 nm
Time: 3 X 5 sec
Power: ~ 10mW

Diode 784.85 nm
Power: ~ 10mW

Bare CDO



Measurements Under Abrasion



New Raman setup integrated with an 
abrasion cell
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In-situ measurements

• Three inch silicon wafer was 
rotated and pressed against a 
polyurethane pad .

• Slurry composition: 3% silica 
particles (90 nm) in 3% H2O2, pH 
10.

• Thickness of the slurry layer : 
(between the window and wafer) ~ 
1 mm

• Raman spectra collected through
a sapphire window

• No significant effect on Raman 
signal by abrasion.

Si-Si Raman peak collected in abrasion cell 
in static and rotating modes.
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In-situ monitoring of Si peak

• In-situ monitoring of barrier 
layer to CDO transition using Si 
peak at 520 cm-1.

• Si peak at 520 cm-1 is from the 
substrate underneath the CDO 
film.
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In-situ monitoring of CDO peak

• In-situ monitoring of barrier 
layer to CDO transition using 
CDO peak at 2917 cm-1.

• Increase in the CDO peak 
intensity as the Ta layer is 
removed
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Chemical Analysis



H2O2 Concentration vs Raman Intensity

. Ar laser (50mW)

. Peak at 877 cm-1.

. Clear correlation between 
Raman intensity and the 
concentration.
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Detection of Molybdate Species

• Novel oxidants/slurries 
based on Mo have been 
patented
(Climax Engineered 
Materials, Sahuarita, AZ)

• 1M sodium molybdate 
hydrate at 9.56 pH.

• Ar laser at 50 mW.
• Peaks are in agreement 

with literature values*. 0
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N. Weinstock, H. Schulze, and A. Muller, J. Chem. Phys., 59, 5063 (1973)



Conclusions
• Raman signal from CDO materials shows promise in detecting 

Ta to CDO transition.
• Raman technique is more sensitive than the currently popular 

reflectance technique.
• Raman signal (of Si and CDO) can be collected in the presence 

of a slurry and during abrasion.
• Raman spectroscopy has potential to identify and perhaps 

quantitative chemical species present in the region close to 
wafer.
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