

# Novel CMP Pad for Tungsten Polishing

ERC TeleSeminar March 24, 2005 John Bare, Program Director



## Agenda

- Background on pad benefits, features, and architecture
- Current pad technology
- Pad performance
- Future pad technology



# History and Philosophy

- Commercial goal create CMP polishing pad business
- Barrier entrenched technologies and suppliers difficult to displace
- Constraints Polyurethane IP field dominated by R&H
- Concept improve overall performance and lower CoO without copying existing technology
- Target users or applications for whom "one size fits all" approach is not the best → provide alternative to existing CMP pad
- R&D History many materials, surface treatments, composite structures examined



# W CMP Generally Expected Performance

- 2,500 4,000 Å/min removal rate
- <5% WIWNU
- <20 particles added</li>
- <200 Å Dishing</li>
- <200 Å Erosion</li>
- <100 Å/min oxide removal rate
- >1,000 polishing minutes pad life



# Tungsten Polishing Pad Features and Benefits

**Application Specific Pad** 

- Polyolefin foam pad
- Closed cell structure for surface texture
- No diamond conditioning
- Very low defects
- Long life
- Low Cost of Ownership



### Pad Architecture



Cell structure and construction similar for all pads

Cell size ≈ 150 µm



Thermoplastic Foam Surface Pad Co-extruded Hard-cap Sub-pad Glue Layer Type A Mylar Interposer Glue Layer Type B



#### LECO Screening 12-inch Table Top Polisher

**LECO Screening of Pad Materials** 



ERC Seminar - Tungsten 24-March-2005



#### DOE for polisher conditions Removal Rate as f(Down Force)

psiloQuest 3035 CMP Polishing Pad Tungsten Removal Rate as Function of Downforce for Various Table Speeds





#### DOE for polisher conditions Removal Rate as f(Table Speed)

#### psiloQuest 3035 CMP Polishing Pad Tungsten Removal Rate as Function of Table Speed for Various Down Force





#### DOE for polisher conditions WIWNU as f(Down Force)

psiloQuest 3035 CMP Polishing Pad WIWNU as Function of Down Force for VariousTable Speeds





#### DOE for polisher conditions WIWNU as f(Table Speed)

psiloQuest 3035 CMP Polishing Pad WIWNU as Function of Table Speed for Various Down Force





#### [H<sub>2</sub>O<sub>2</sub>] and Slurry Dilution



Effect of H<sub>2</sub>O<sub>2</sub> Concentration and Slurry Dilution on Removal Rate

ERC Seminar - Tungsten 24-March-2005



# [H<sub>2</sub>O<sub>2</sub>] and Slurry Dilution

- Increasing  $[H_2O_2]$  can increase Removal Rate
- Works very well at higher [H<sub>2</sub>O<sub>2</sub>] 4% H<sub>2</sub>O<sub>2</sub> vs. typical 2%
- No increase in keyholing (coring)
- Increasing slurry dilution can decrease Cost of Ownership & environmental cost
- Works well with non-H<sub>2</sub>O<sub>2</sub> slurry



#### **TQ800** Evaluation

#### TQ800 Response to Aggressive Abuse from Polisher Settings and Temperature





#### W3870 Evaluation

W3870 Removal Rate and WIWNU with Fujimi FCW-1 Tungsten-Polishing Slurry





# I ungsten Removal Rate and WIWNUW30352500-minute Marathon

Tungsten Removal Rate and WIWNU W3035 2500-minute commercial wafer run





#### Cross section of completed via Commercial wafer



- Excellent plug planarity and controlled recess.
- End-of-line device yield equivalent between outsourced CMP and existing qualified fab process.





#### **Defectivity During CMP Marathon**





### Erosion with Fujimi slurry

Tungsten Polishing Pad Erosion Evaluation for 50 mil pad thickness Oxide Erosion as f(DF[7 & 5], TS[85 & 100], Oxidizer[80%, 60%, 50%])





### **Material Properties of Interest**

Overall performance results from convergence of several parameters/properties

- Material
  - Some properties determined by composition of polymer material
  - Some properties determined by manufacturing process
- Cell Size
  - Typical cell size ~ 100 200 microns
  - Smaller cell size gives more, smaller land areas for pad-wafer contact
- Hardness
  - Hardness is f(density for similar starting material)
  - For given material, harder = denser = more land area
- Thermal Stability
  - Higher thermal stability improves lifetime
  - PE gives more thermal stability than EVA
- Additives/Filler
  - Increase effective hardness of pad for a given material
  - Change asperity size and distribution
  - Change Coefficient of Friction

John Bare



# Summary Tungsten CMP Polishing Pads

- polyolefin pads alternative to polyurethane
- Balance of performance properties
  - RR, WIWNU, Dishing, Erosion, Defects
- Low Cost of Ownership
  - No diamond conditioning
  - Long pad life
  - Lower slurry consumption