Interactions of Moisture with Dielectric Films

J. Yao, H. Juneja, A. Iqbal and F. Shadman

Department of Chemical and Environmental Engineering University of Arizona December 14th, 2006

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

1

Low-k Interlayer Dielectric

Outline

- Necessity to remove moisture from low-*k* dielectric films
- Research objectives
- Experimental procedure and model development
- Experimental results and model validation
- Comparison of moisture uptake and removal in two p-MSQ films
- Effect of cap layer on moisture uptake and removal
- Conclusion

Dielectric Materials as Candidates for Low-*k*

Oxide Derivatives	
F-doped oxides (CVD)	k = 3.3-3.9
C-doped oxides (SOG, CVD)	k = 2.8-3.5
H-doped oxides (SOG)	k = 2.5-3.3
<u>Organics</u>	
Polyimides (spin-on)	k = 3.0-4.0
Aromatic polymers (spin-on)	k = 2.6-3.2
Vapor-deposited parylene; parylene-F	k ~ 2.7; k ~ 2.3
F-doped amorphous carbon	k = 2.3-2.8
Teflon/PTFE (spin-on)	k = 1.9-2.1
Highly Porous Oxides	
Xerogels/Aerogels	k = 1.8-2.5
<u>Air</u>	k = 1

Source: Prof. Krishna Saraswat, Stanford University

4

Adverse Impacts of Moisture

- Moisture (water k value ~ 80) could significantly deteriorate k value of a low-k film.
- Moisture outgassing degrades device reliability.
- Moisture adsorbed on low-*k* film surface may cause metal corrosion and delamination of a cap layer.

Objectives

- Determine the fundamentals of moisture interactions with blanket, and patterned porous low-*k* films:
 - Loading
 - Outgassing Dynamics
- Develop a process model that could be used to design a more efficient purging and drying process for contaminated low-k films
- Study the effect of a cap layer on moisture adsorption and desorption in porous low-k films

Experimental Setup

7

Experimental Reactor

- 1 x 2 cm coupons
- Random orientation results in adequate gas mixing
- High wafer to glass surface area ratio

8

Experimental Procedure

Adsorption at 25°C Desorption at 25°C Bake-out at 100, 200 & 380°C

Temporal profile of adsorption /desorption

Test Samples

p-MSQ	Processing Conditions	Contact angle
Α	Partial etch @ 10s, N ₂ H ₂ ash @ 20s	102°
В	Partial etch @ 10s, HeO ₂ ash @ 20s	50°
С	Partial etch @ 10s, H ₂ ash @ 20s	90 °
D	Partial etch @ 10s, no ash	48°
E	Blanket and cure only	105°
F	JSR LKD 5109. Standard JSR cure, partial etch and partial ash	

* Samples provided by Sematech

Moisture Absorption Loading in SiO₂ and p-MSQ

Challenge Concentration: 56 ppb; p-MSQ F: JSR LKD 5109. Standard JSR cure, partial etch and partial ash.

p-MSQ F has much higher sorption loading than SiO₂

S	0	2
		4

Δ Electronegativity	1.7
-OH site density	4.6 x 10 ¹⁴
	(#/cm²)

p-MSQ

$$C_{film0} = C_{g0}\varepsilon + C_{s0}(1-\varepsilon)$$
$$C_{s0} = C_{g0} * S$$

C_{go} = equilibrium moisture concentration in the pore

C_{so} = equilibrium moisture concentration in the matrix

C_{filmo} = total moisture loading

 ε = porosity, S = solubility

Moisture Retention after Isothermal Purge

Challenge Concentration: 56 ppb; Purge time: 10 hrs P-MSQ F: JSR LKD 5109. Standard JSR cure, partial etch and partial ash.

• ~55 % of adsorbed moisture removed from SiO₂ at 150°C

~28 % of absorbed moisture removed from p-MSQ F at 250°C

Moisture Transport Pathways in A Porous Low-k Film

Model Development for Uniform Film

Transport of moisture in matrix:

$$\frac{\partial C_s}{\partial t} = D_s \frac{\partial^2 C_s}{\partial z^2} - \frac{\varepsilon}{1 - \varepsilon} k_m S_p \left(\frac{C_s}{S} - C_g\right)$$

Transport of moisture in pore:

$$\frac{\partial C_g}{\partial t} = D_g \frac{\partial^2 C_S}{\partial z^2} + k_m S_p \left(\frac{C_S}{S} - C_g\right)$$

 C_{s} / C_{q} : Moisture concentration in matrix / pore;

- D_{s} / D_{a} : Moisture diffusivity in matrix / pore;
- ε: Film porosity;
- S_p: Specific surface area;
- S: Moisture solubility in matrix;

k_m: Mass transport coefficient between pore and matrix

Experimental Data and Model Validation at Different Temperatures

p-MSQ E; Challenge conc.: 1500 ppm; Purge gas purity: 1 ppb;

Experimental Data and Model Validation <u>at Different Concentrations</u>

p-MSQ E; Temperature: 25 °C; Purge gas purity: 1 ppb;

Purge gas flow rate: 350 sccm

Estimated Parameters

p-MSQ Film: E (blanket low-k film)

Temp. ℃	D _S cm²/sec	D _g cm²/sec	Е	S*
25	7.0e-15	3e-10	0.3	1.3e5
200	1.0e-13	2.8e-9	0.3	5.2e4
380	3.5e-13	8e-9	0.3	3.4e4

 D_{S} / D_{q} : Moisture diffusivity in matrix / pore;

ε: Film porosity;

S: Moisture solubility in matrix;

Moisture removal is a slow and activated process.

Effects of Etch on Low-k Film

Spin on p-MSQ (JSR LKD 5109[™], k = 2.2)

P-MSQ before and after 1 minute etching in C_2F_6/H_2 (25%–75%) mixture 800 W, 40 sccm, 10 mtorr, -100 V.

Source: Eur. Phys. J. Appl. Phys. 28, 2004, p336

Effects of Plasma Ash on Low-k Film

Spin on p-MSQ

Cross-sectional SEM images of single damascene profiles after: (a) trench etch, (b) O_2 ash, (c) H_2 ash, and (d) N_2 / H_2 ash.

Source: J. Vac. Sci. Technol. B. Vol. 22, No. 2, 2004, p552

Effects of O₂ Plasma Ash on Low-k Film

O₂-based RF-bias process; spin on p-MSQ

FTIR spectra after O₂ plasma ash.

Source: Microelectronic Engineering 73-74 (2004) p352

TEM Images of Film A and Film E

 100 nm

 Low-k

a – Damaged low-*k* layer, 50 nm b – Bulk low-*k* layer, 50 nm Low-*k* thickness ~ 100 nm Low-*k* thickness ~ 200 nm

p-MSQ A -- Partial etch, N₂H₂ ash

p-MSQ E -- blanket and cure only

Moisture Loading Comparison

Schematic of A Processed Low-k Film

Properties and depth of the two layers depend on conditions, chemistry and time of the etch/ash processes.

Model Development for Non-Uniform <u>Film</u>

Transport of moisture in matrix:

$$\frac{\partial C_s}{\partial t} = \frac{1}{1 - \varepsilon} \frac{\partial}{\partial z} [(1 - \varepsilon) D_s \frac{\partial C_s}{\partial z}] - \frac{\varepsilon}{1 - \varepsilon} k_m S_p (\frac{C_s}{S} - C_g)$$

Transport of moisture in pore:

$$\frac{\partial C_g}{\partial t} = \frac{1}{\varepsilon} \frac{\partial}{\partial z} [\varepsilon D_g \frac{\partial C_s}{\partial z}] + k_m S_p (\frac{C_s}{S} - C_g)$$

C_s / C_a: Moisture concentration in matrix / pore;

- D_S / D_q: Moisture diffusivity in matrix / pore;
- ε: Film porosity;
- S_p: Specific surface area;
- S: Moisture solubility in matrix;
- k_m: Mass transport coefficient between pore and matrix

Estimated Parameters

p-MSQ Film: A (etched and ashed with N₂H₂)

Temp. ℃	D _{S1} cm²/sec	D _{S2} cm²/sec	D _g cm²/sec	\mathcal{E}_1	\mathcal{E}_2	S ₁ *	S ₂ *
25	2.0e-14	7.0e-15	3e-10	0.6	0.3	1.1e5	1.3e5
200	2.0e-13	1.0e-13	2.8e-9	0.6	0.3	6.0e4	5.2e4
380	5.9e-13	3.5e-13	8e-9	0.6	0.3	4.5e4	3.4e4

* Unit: cm³ (gas)/cm³(solid)

1: Top layer / damaged layer;

- 2: Bottom / unaffected bulk layer;
- D_S / D_q: Moisture diffusivity in matrix / pore;
- ε: Film porosity;
- S: Moisture solubility in matrix;

1. The damaged layer has higher moisture diffusivity.

2. These two layers have close moisture solubility.

Moisture Uptake in p-MSQ Film A and Film E

Challenge conc.: 1500 ppm; Temperature: 25 °C;

Moisture Retention in p-MSQ Film A and Film E

Challenge conc.: 1500 ppm; Exposure time: 15 min; Temperature: 25 °C;

Purge gas conc.: 1 ppb; Challenge gas flow rate: 350 sccm

Practical Applications of Model

It is a practical tool for:

- evaluating the effect of purge temperature and purge gas purity.

- evaluating the effect of cap layer on contaminants outgassing and retention.

Effect of Purge Gas Purity

p-MSQ Film A; Challenge conc.: 100 ppm; Temperature: 25 °C

Purge purity enhances drying primarily at the late stages of desorption

Effect of Purge Temperature

p-MSQ Film A; Challenge conc.: 1500 ppm; Purge gas purity: 1ppb

There is an optimum extent of heating for enhancing the desorption

Moisture Uptake in Capped and Uncapped p-MSQ Films

(I) Uncapped p-MSQ film:

Film thickness: 100 nm

Porosity: 0.3

 $D_{s} = 7.0 \times 10^{-15} \text{ cm}^{2}/\text{sec}$

S = 1.3×10⁵ cm³ (gas)/cm³(solid)

(II). Capped p-MSQ films:

Thickness of low-k layer: 100 nm

Thickness of cap layer: 10 nm

Porosity of low-k layer: 0.3

Porosity of cap layer: ~0

 $D_s = 7.0 \times 10^{-9} - 7.0 \times 10^{-15} cm^2/sec$

S = 60 - 1.3×10⁵cm³(gas)/cm³(solid)

Moisture Uptake in Capped p-MSQ Films

Moisture Uptake in Capped and Uncapped p-MSQ Films

Challenge conc.: 1500 ppm; Temperature: 25 °C

Moisture Retention in Capped and Uncapped p-MSQ Films

Temperature: 25 °C; Purge gas conc.: 1 ppb; Initially all the films were equilibrated with 1500 ppm of moisture

Conclusions

- Moisture removal is a slow and activated process
- Etching and ashing processes change the properties of a low-k film and its interactions with moisture. A reducing plasma environment during ashing process accelerates the interaction between moisture and the low-k film by increasing moisture diffusivity and porosity of the low-k film.
- Solubility of the cap layer is more important than diffusivity in preventing moisture intrusion into low-k film even for a wide range of diffusivity.

High-k Gate Dielectrics

High-k Gate Dielectrics

- SiO₂ (k ~ 3.9) was the material of choice so far.
- Currently, promising candidates are HfO₂, ZrO₂, TiO₂, ZrSiO₄, HfSiON and HfSiO.
- Other high-k that have been studied include AI_2O_3 , Ta_2O_5 , TiO_3 , Y_2O_3 etc.

Test Samples

- Silicon wafers:
- 8 inch p-type
- 10–80 Ω cm
- Czochralski grown
- double-side polished
- (100) oriented
- 50 Å thick ZrO₂ or HfO₂ film
- ALCVD process

Effect of Moisture Challenge Concentration

on Loading

 $T = 24^{\circ}C$

* Raghu, P.; Yim, C.; Shadman, F. Susceptibility of SiO₂, ZrO₂, and HfO₂ dielectrics to moisture contamination. *AIChE Journal*. 2004, 50 (8), 1881-1888.

Loading: ZrO₂ > HfO₂ > SiO₂

Effect of Temperature on Loading

* Raghu, P.; Yim, C.; Shadman, F. Susceptibility of SiO₂, ZrO₂, and HfO₂ dielectrics to moisture contamination. *AIChE Journal*. 2004, 50 (8), 1881-1888.

*Raghu, P.; Rana, N.; Yim, C.; Shero, E.; Shadman, F. Adsorption of moisture and organic contaminants on hafnium oxide, zirconium oxide, and silicon oxide gate dielectrics. *J. Electrochem. Soc.* 2003, 150 (10), F186-F193.

• Loading: ZrO₂ > HfO₂ > SiO₂

Effect of Moisture Challenge Concentration

on HfO₂ Surface

• Loading increases as the moisture challenge concentration increases.

Effect of Temperature on ZrO₂ Surface.

- Equilibrium is reached more rapidly for 100 °C.
- Moisture loading is higher at 55 °C.

Effect of Purge Flow Rate on Removal of

<u>Moisture</u>

Increase in flow rate has a noticeable effect only at the beginning of the purge.

Effect of Purge Gas Moisture Concentration on Removal of Moisture

• Effect of purge gas moisture concentration is only significant towards the end of purge process.

Effect of Temperature on Removal of

<u>Moisture</u>

Increasing temperature enhances moisture removal rate.

Application of the Model to Compare Alternate Purge Schedules.

Process no.	Processing time for 90% cleanup (min)	Volume (lit)	Purity (ppb)	Operation cost* (cents)
1	115.67	23.13	1	69
2	26.53	13.27	1	39
3	30.48	3.50 4.10	1000 1	22

Process 1: 200 sccm flow rate; purge gas purity: 1 ppb moisture; 100°C.

Process 2: 500 sccm flow rate; purge gas purity: 1 ppb moisture; 400°C.

Process 3: 5 minutes: 500 sccm flow rate; purge gas purity: 1000 ppb moisture; 100°C. 5 minutes: 200 sccm flow rate; purge gas purity: 1000 ppb moisture; 200°C.

Remaining: 200 sccm flow rate; purge gas purity: 1 ppb moisture; 400°C.

* Includes cost of maintaining furnace temperature and generating purge gas. Does not include the cost of operating instrumentation. Cost of electricity = 10 cents/kWh. Total exposed surface area of wafers = 3140 cm².

- Process 1: Isothermal removal of moisture from the film.
- Process 2: High flow rate, purest purge gas, high temperature.
- Process 3: Optimized process.

Conclusions

- Moisture is a prominent problem for high-k dielectric films.
- Loading increases as the moisture challenge concentration increase, and the order is ZrO₂
 > HfO₂ > SiO₂.
- Moisture loading is higher at lower temperature.
- Application of the model to optimize process conditions for efficient cleanup of dielectric films is illustrated.

Acknowledgement

University of Arizona Dr. Farhang Shadman Advisor, Regents Professor in Chemical Engineering and Optical Sciences. Asad Igbal Graduate Student Dr. Supapan Seraphin Sample characterization (TEM) **Sematech** For partial support and providing samples **Texas Instruments** Dr. Ting Tsui For providing samples Intel For providing Si wafers **ASM** America **Deposition of ZrO₂ and HfO₂ films NSF/SRC ERC for** For partial support **Environmentally Benign** Semiconductor Manufacturing