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Low-k Interlayer Dielectric
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• Necessity to remove moisture from low-k dielectric films

• Research objectives

• Experimental procedure and model development

• Experimental results and model validation

• Comparison of moisture uptake and removal in two p-MSQ films

• Effect of cap layer on moisture uptake and removal

• Conclusion

Outline 

3NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing



Dielectric Materials as Candidates for Low-k

Source:  Prof. Krishna Saraswat, Stanford University
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Adverse Impacts of Moisture 

• Moisture (water k value ~ 80) could significantly deteriorate k
value of a low-k film.

• Moisture outgassing degrades device reliability.

• Moisture adsorbed on low-k film surface may cause metal 
corrosion and delamination of a cap layer. 
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Objectives
• Determine the fundamentals of moisture interactions with 

blanket, and patterned porous low-k films:
− Loading
− Outgassing Dynamics

• Develop a process model that could be used to design a 
more efficient  purging and drying process for contaminated 
low-k films

• Study the effect of a cap layer on moisture adsorption and 
desorption in porous low-k films
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Experimental Setup
Zero gas line

Sample gas line B

Direct Injection System

Sample gas line A

MFC1
MFC 2

Gas Purifiers

Gas Purifiers

UHP N2 Main 
Supply

MFC 3
MFC 4

Purified nitrogen to direct injection system

MFC 6

CRDS EIMSAPIMS

• Atmospheric Pressure Ionization Mass 
Spectrometer (APIMS)

• Cavity Ring Down Spectroscope 
(CRDS)

•Electron Impact Mass Spectrometer 
(EIMS)

• Fourier Transform Infrared 
Spectrometer (FTIR)

FTIR

N2 Main 
Supply

Temperature 
Controller Reactor

MFC 5

Moisture 
Permeation 
Device
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Experimental Reactor

Wafer coupons 
loaded on springs

Pyrex reactor

• 1 x 2 cm coupons

• Random orientation results in adequate gas mixing

• High wafer to glass surface area ratio
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Experimental Procedure

Adsorption at 25oC

Desorption at 25oC

Bake-out at 100, 200 
& 380oC
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Test Samples  

105oBlanket and cure onlyE
____JSR LKD 5109. Standard JSR cure, 

partial etch and partial ash 
F

Partial etch @ 10s, no ash

Partial etch @ 10s, H2 ash @ 20s

Partial etch @ 10s, HeO2 ash @ 20s

Partial etch @ 10s, N2H2 ash @ 20s
Processing Conditions

D

C

B

A
p-MSQ

48o

90o

50o

102o

Contact angle

*  Samples provided by Sematech
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SiO2

∆ Electronegativity       1.7        

-OH site density           4.6 x 1014

(#/cm2)

p-MSQ

Cgo = equilibrium moisture concentration 
in the pore

Cso = equilibrium moisture concentration 
in the matrix

Cfilmo = total moisture loading

ε = porosity, S = solubility

)1(000 εε −+= sgfilm CCC
SCC gs *00 =

Challenge Concentration: 56 ppb;
p-MSQ F: JSR LKD 5109. Standard 
JSR cure, partial etch and partial ash.
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p-MSQ F has much higher     
sorption loading than SiO2

Moisture Absorption Loading in SiO2
and p-MSQ  
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Challenge Concentration: 56 ppb; Purge time: 10 hrs
P-MSQ F: JSR LKD 5109. Standard JSR cure, partial etch and partial ash.

Moisture Retention after Isothermal Purge  

Temperature, oC

• ~55 % of adsorbed moisture removed from SiO2 at 150ºC

• ~28 % of absorbed moisture removed from p-MSQ F at 250ºC
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Moisture Transport Pathways
in A Porous Low-k Film

Gas flow

Porous low-k film
Substrate

Exchange between 
matrix and pores

Desorption from 
matrix

Permeation in matrix

Transport 
in pores
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Model Development for Uniform Film 
Transport of moisture in matrix:
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Transport of moisture in pore:

CS / Cg: Moisture concentration in matrix / pore; 

DS / Dg: Moisture diffusivity in matrix / pore; 

ε: Film porosity; 

Sp: Specific surface area; 

S: Moisture solubility in matrix; 

km: Mass transport coefficient between pore and matrix  
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p-MSQ E; Challenge conc.: 1500 ppm; Purge gas purity: 1 ppb; 

Purge gas flow rate: 350 sccm

Experimental Data and Model Validation 
at Different Temperatures

Smooth curves are model prediction

Time, min
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Experimental Data and Model Validation 
at Different Concentrations
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Estimated Parameters

p-MSQ Film: E (blanket low-k film)
Temp. 

ºC
DS

cm2/sec
Dg

cm2/sec
S*

25 7.0e-15 3e-10 0.3 1.3e5

200 1.0e-13 2.8e-9 0.3 5.2e4

380 3.5e-13 8e-9 0.3 3.4e4

ε

* Unit: cm3 (gas)/cm3(solid)

DS / Dg: Moisture diffusivity in matrix / pore; 

ε: Film porosity; 

S: Moisture solubility in matrix; 

Moisture removal is a slow and activated process.
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Effects of Etch on Low-k Film
Spin on p-MSQ (JSR LKD 5109TM, k = 2.2)

P-MSQ before and after 1 minute 
etching in C2F6/H2 (25%–75%) mixture 
800 W, 40 sccm, 10 mtorr, −100 V.

Before Etching

After Etching

Source: Eur. Phys. J. Appl. Phys. 28, 2004, p336
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Effects of Plasma Ash on Low-k Film
Spin on p-MSQ

Cross-sectional SEM images of single damascene profiles after: 
(a) trench etch, (b) O2 ash, (c) H2 ash, and (d) N2 /H2 ash. 

Source: J. Vac. Sci. Technol. B. Vol. 22, No. 2, 2004, p552
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Effects of O2 Plasma Ash on Low-k Film
O2-based RF-bias process; spin on p-MSQ

FTIR spectra after O2 plasma ash.

Source: Microelectronic Engineering 73-74 (2004) p352
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TEM Images of Film A and Film E

Low-k thickness ~ 200 nm

p-MSQ E -- blanket and cure only

100 nm

Low-k
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a – Damaged low-k layer, 50 nm

b – Bulk low-k layer, 50 nm

Low-k thickness  ~ 100 nm

p-MSQ A -- Partial etch, N2H2 ash
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Moisture Loading Comparison
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Schematic of A Processed Low-k Film
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z
Top Layer 

Bottom Layer   

DS1, S1, ε1

DS2, S2, ε2

L2

L1

Substrate   

Properties and depth of the two layers depend on conditions, 
chemistry and time of the etch/ash processes.



Model Development for Non-Uniform 
Film 

Transport of moisture in matrix:
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)(][1＝ g
S

pm
S

g
g C

S
CSk

z
CD

zt
C

−+
∂
∂

∂
∂

∂

∂
ε

ε

CS / Cg: Moisture concentration in matrix / pore; 

DS / Dg: Moisture diffusivity in matrix / pore; 

ε: Film porosity; 

Sp: Specific surface area; 

S: Moisture solubility in matrix; 

km: Mass transport coefficient between pore and matrix  
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Estimated Parameters
p-MSQ Film: A (etched and ashed with N2H2)

Temp. 
ºC

DS1
cm2/sec

DS2
cm2/sec

Dg
cm2/sec

S1* S2*

25 2.0e-14 7.0e-15 3e-10 0.6 0.3 1.1e5 1.3e5

200 2.0e-13 1.0e-13 2.8e-9 0.6 0.3 6.0e4 5.2e4

380 5.9e-13 3.5e-13 8e-9 0.6 0.3 4.5e4 3.4e4

1ε 2ε

* Unit: cm3 (gas)/cm3(solid) 1: Top layer / damaged layer;

2:  Bottom / unaffected bulk layer;

DS / Dg: Moisture diffusivity in matrix / pore; 

ε: Film porosity; 

S: Moisture solubility in matrix; 

1. The damaged layer has higher moisture diffusivity.

2. These two layers have close moisture solubility.
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Moisture Uptake in p-MSQ Film A and 
Film E
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Smooth curves are model prediction

Film E: blanket low–k
film; thickness:200 nm

Film A: etched / ashed
low–k film; 
thickness:100 nm

Challenge conc.: 1500 ppm; Temperature: 25 ºC;

Challenge gas flow rate: 350 sccm
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Moisture Retention in p-MSQ Film A 
and Film E

Challenge conc.: 1500 ppm; Exposure time: 15 min; Temperature: 25 ºC;

Purge gas conc.: 1 ppb; Challenge gas flow rate: 350 sccm
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Practical Applications of Model

It is a practical tool for: 

- evaluating the effect of purge temperature and 
purge gas purity.

- evaluating the effect of cap layer on contaminants  
outgassing and retention. 
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Effect of Purge Gas Purity
p-MSQ Film A; Challenge conc.: 100 ppm; Temperature: 25 oC
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Purge purity enhances drying primarily at the late stages of desorption
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Moisture Uptake in Capped and 
Uncapped p-MSQ Films

(I) Uncapped p-MSQ film:
Film thickness: 100 nm

Porosity: 0.3

DS = 7.0×10-15 cm2/sec

S = 1.3×105 cm3 (gas)/cm3(solid)

100 nmLow-k
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(II).    Capped p-MSQ films:
Thickness of low-k layer: 100 nm

Thickness of cap layer: 10 nm

Porosity of low-k layer: 0.3

Porosity of cap layer: ~0

DS = 7.0×10-9 - 7.0×10-15cm2/sec

S = 60 - 1.3×105cm3(gas)/cm3(solid)

10 nmCap layer

Low-k 100 nm



Moisture Uptake in Capped p-MSQ 
Films
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Moisture Uptake in Capped and 
Uncapped p-MSQ Films
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Moisture Retention in Capped and 
Uncapped p-MSQ Films

Temperature: 25 oC; Purge gas conc.: 1 ppb; Initially all the films were 
equilibrated with 1500 ppm of moisture
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Conclusions

• Moisture removal is a slow and activated process

• Etching and ashing processes change the properties of a low-k
film and its interactions with moisture. A reducing plasma 
environment during ashing process accelerates the interaction 
between moisture and the low-k film  by increasing moisture 
diffusivity and porosity of the low-k film.

• Solubility of the cap layer is more important than diffusivity in 
preventing moisture intrusion into low-k film even for a wide 
range of diffusivity.
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High-k Gate Dielectrics
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High-k Gate Dielectrics

• SiO2 (k ~ 3.9) was the material of choice so far.

• Currently, promising candidates are HfO2, 
ZrO2, TiO2, ZrSiO4, HfSiON and HfSiO.

• Other high-k that have been studied include 
Al2O3, Ta2O5, TiO3, Y2O3 etc. 
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Test Samples

• Silicon wafers:
- 8 inch p-type
- 10–80 Ω cm 
- Czochralski grown 
- double-side polished 
- (100) oriented 
- 50 Å thick ZrO2 or HfO2 film 
- ALCVD process 
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Effect of  Moisture Challenge Concentration 
on Loading

* Raghu, P.; Yim, C.; Shadman, F. Susceptibility of SiO2, ZrO2, and HfO2 dielectrics to moisture 
contamination. AIChE Journal. 2004, 50 (8), 1881-1888. 

T = 240C
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• Loading: ZrO2 > HfO2 > SiO2



Effect of Temperature on Loading
Challenge Conc. = 0.3%

* Raghu, P.; Yim, C.; Shadman, F. Susceptibility of SiO2, ZrO2, and HfO2
dielectrics to moisture contamination. AIChE Journal. 2004, 50 (8), 1881-1888. 

*Raghu, P.; Rana, N.; Yim, C.; Shero, E.; Shadman, F. Adsorption of 
moisture and organic contaminants on hafnium oxide, zirconium oxide, and 
silicon oxide gate dielectrics. J. Electrochem. Soc. 2003, 150 (10), F186-
F193.

Challenge Conc. = 56 ppb

• Loading: ZrO2 > HfO2 > SiO2
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Effect of Moisture Challenge Concentration 
on HfO2 Surface
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• Loading increases as the moisture challenge        
concentration increases.
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Effect of Temperature on ZrO2 Surface.  
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• Equilibrium is reached more rapidly for 100 0C.

• Moisture loading is higher at 55 0C.
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Effect of Purge Flow Rate on Removal of 
Moisture
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• Increase in flow rate has a noticeable effect 
only at the beginning of the purge.
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Effect of Purge Gas Moisture Concentration 
on Removal of Moisture
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• Effect of purge 
gas moisture 
concentration is 
only significant 
towards the end 
of purge process.



Effect of Temperature on Removal of 
Moisture
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• Increasing temperature enhances moisture 
removal rate.



Application of the Model to Compare Alternate 
Purge Schedules.

Process no. Processing  time for 
90% cleanup (min) Volume (lit) Purity (ppb) Operation cost* 

(cents)

1 115.67 23.13 1 69

2 26.53 13.27 1 39

3 30.48 3.50
4.10

1000
1 22

Process 1: 200 sccm flow rate; purge gas purity: 1 ppb moisture; 100oC.
Process 2: 500 sccm flow rate; purge gas purity: 1 ppb moisture; 400oC.
Process 3: 5 minutes: 500 sccm flow rate; purge gas purity: 1000 ppb moisture; 100oC. 

5 minutes: 200 sccm flow rate; purge gas purity: 1000 ppb moisture; 200oC. 
Remaining: 200 sccm flow rate; purge gas purity: 1 ppb moisture; 400oC.

* Includes cost of maintaining furnace temperature and generating purge gas.  Does not include the cost of operating 
instrumentation.  Cost of electricity = 10 cents/kWh.  Total exposed surface area of wafers = 3140 cm2.

• Process 1: Isothermal removal of moisture from the film.

• Process 2: High flow rate, purest purge gas, high temperature.

• Process 3: Optimized process.
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Conclusions

• Moisture is a prominent problem for high-k 
dielectric films.

• Loading increases as the moisture challenge 
concentration increase, and the order is ZrO2
> HfO2 > SiO2.

• Moisture loading is higher at lower 
temperature.

• Application of the model to optimize process 
conditions for efficient cleanup of dielectric 
films is illustrated.
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