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Dielectrics in Integrated Circuits
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Solventless Low-k Dielectrics

 Thin, Conformal Coatings
 Solventless
 Uses existing tool set
 Extendibility to future

geometries

Spin-OnCVD vs

Semiconductor International, Sept 1998

 Large solvent use
 Environmental and

worker hazard
 Can not be used for

complex geometries or
multiple sacrificial layers
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Evolution of Dielectric Materials
 SiO2 (k ~ 4.0)
 Fluorinated Silicate

Glass (FSG), k ~ 3.7
 Organosilicate Glass

(OSG), k ~ 2.7 – 3.6
 Porous OSG, k(p)
 Air Gap, keff ~ 1.4

% Porosity k

0

20

50

90

2.7

2.3

1.75

1.15

 
SiO2

Si:O:C:H
(Organosilicate
Glass - OSG)

4.0
Fully dense k

2.7-3.6

Composition

Air
k=1.0

SiO2SiO2



5

Precursor selection using Density
Functional Theory (DFT)
 Large body of research for OSG deposition

 Much is unpublished or non-specific to
corporate intellectual property

 Perform experiments on the desktop first
 Examine methoxymethylsilanes
 Bond strengths – fragmentation patterns
 Elementary reactions

 Utilize DFT to screen precursors
 Save time, money, resources, reduces

exposure risks
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OSG Building Blocks
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Connectivity # : <r>
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A Theoretical Treatment
The Percolation of Rigidity

“For solids in which all atoms are able to form two or more bonds, the
percolation of rigidity occurs at an average connectivity number of 2.4*”

J. Phillips, J. Non-Cryst. Solids 34, 153 (1979)
G.H. Dohler, R. Dandoloff, and H. Bilz, J. Non-Cryst. Solids 42, 87 (1980)
S.J. Limb, K.K. Gleason, D.J. Edell, and E.F. Gleason, J. Vac. Sci. Technol. A. 15(4),1814 (1997)
D.D. Burkey and K.K. Gleason, J. Appl. Phys. 93, 5143 (2003)
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Connectivity # from FTIR

<r> = weighted contribution M, D, T, and Q groups

 Spectral curve fitting to find relative amounts of M, D and
T groups within each spectra

 To find Q groups
 Assumes same number Si atoms in each spectrum and each

Si is bonded to either oxygen or carbon
 Any differences in total combined area of M, D, and T

attributed to Q groups
 Calculates the minimum number of Q groups

 Selected conformation of FTIR data by solid-state magic
angle spinning 29Si  NMR
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The Percolation of Rigidity
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A.D. Ross and K.K. Gleason,
J. Appl. Phys. 97, 113707 (2005).
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Design of Robust Overlying Dielectric
 Low-k OSG containing only T and Q

groups
 <r> greater than 2.4  Harder films
 Silicon oxygen bonds increase hardness and

modulus
 T groups ideal, retain carbon  lowering the

dielectric constant
 How can we intelligently choose precursors for hard

OSG deposition?
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Methodology
 Examined two families of molecules

 Methylsilanes (CH3)nSiH4-n

 Methoxymethylsilanes (CH3O)nSi(CH3)4-n
 All fragments
 All reaction products

 56 chemical species, radicals, ions
 Over 100 reactions

 Using Gaussian®

 Optimized Geometries
 Performed Frequency Calculations
 Single Point Energy Calculations
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OSG Precursors
 Studied methylsilanes
 Examine a family of methoxymethylsilanes

 Compute thermochemistry
 PECVD depositions – Low Power to allow

control over chemistry
 Compare and interpret the results
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Fragmentation of Methoxytrimethylsilane (MO3MS)

MO3MS

(3)
107.0 kcal/mol

(2)
86.9 kcal/mol

MO2MS• •CH3

•OCH3
3MS•

H
C
O
Si•CH33MSiO•

(1)
84.8 kcal/mol
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Bond Dissociation Energies
 Si-O bond is

strongest (likely
preserved)

 Si-C and O-C
bonds have
similar bond
strengths
 No selectivity
 Likely loss of Si-C

bonding

 Expectations
 MO3MS – M
 2MO2MS – D
 3MOMS – T
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FTIR of PECVD OSG films

 Si–O–Si stretching mode
 Increases with increased precursor

oxygenation
 Intensity of ordered peak increases

 Dielectric constants after a 1 hour
anneal at 400°C
 From MO3MS – 2.78
 From 2MO2MS – 2.85
 From 3MOMS – 3.20
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Strategy to increase T groups
 Examine pathways in presence of O atom

 Use precursor with most Si-C bonding
 Retain more Si-C bonding
 Lower k

 Compute thermochemistry on desktop
 PECVD depositions on the bench
 Compare results
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Methoxytrimethylsilane (MO3MS) reactions with
Oxygen (3P2) atom

MO3MS

O•

MO2MS• •OCH3

•OCH33MSiO•

H
C
O
Si

(1)

(2)
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MO3MS + O2 (As-Deposited)

MO3MS + O2 (Post-anneal)

FTIR PECVD film from MO3MS + O2

 OH present in
film
 Removed

upon
annealing

 Increased Si-
O-Si band

 Very little CH
 Only T & Q

groups
 k ~ 5.94

(as-dep)
 k ~ 4.06

(post-anneal)
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Trimethoxymethylsilane (3MOMS) reaction with
Oxygen (3P2) atom
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(2)

3MOSi•
•OCH3

2MOMSiO•
•OCH3

H
C
O
Si

O•

3MOMS



22

FTIR of PECVD films from 3MOMS + O2

 Loss of
selectivity

 All T & Q
groups

 Little CH
remaining

 Increased
Si–O–Si

 Damage to
film
 OH content
 k ~ 4.29
 Compared to

k ~ 3.20
4000 3500 3000 2500 2000 1500 1000

 

Wavenumber (cm
- 1
)

 3MOMS
 

 3MOMS + O
2

 3MOMS + O
2
 - annealed

1300 1280 1260 1240

 

Wavenumber (cm
-1
)



23

Summary to this point
 Films from monomer only

 dielectric constants <3 obtained

 Not enough T groups to get <r> above percolation of
rigidity

 Films from monomer plus O2

 Loss of selectivity

 Damage to film – SiOH in resulting film

 Dielectric constants are high

 Consider reducing chemistry
 Examine reactions with hydrogen atom



24

Trimethoxymethylsilane (3MOMS) reaction with
Hydrogen (2S½) atom

3MOMS
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Silanol Formation and reactions
 Conversion of methoxy to silanol is greatly

thermodynamically favored over silane formation
by removing a methyl group

 If all methoxy groups can be converted to silanol
groups . . .
 Control the ratios of M, D, T, and Q groups by varying

the precursor flow rates of MO3MS, 2MO2MS, 3MOMS,
4MOS respectively

Si CH3O

CH3

CH3

O
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3H·

Condensation
Reactions

Si OH
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Si SiO
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Si

O

OSi ( )
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FTIR of PECVD films from 3MOMS + H2

 T groups
only

 Less CH
due to
conversion
of OCH3

 k ~ 3.18
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Other approaches to increase hardness

 Increase Power
 Higher crosslinking
 More dense film
 What happens for us?

 Expectations
 Loss of selectivity
 Tend toward random assembly of radical

species
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3MOMS at varied plasma powers
 Loss of chemical

selectivity
 Loss of Si–CH3

 Complete conversion to
Q, or Q and Si-Si
bonding

 Dielectric constants
increase with increased
power

 Same effect is seen
with pulsed plasma
using 200W peak power

20W - k ~ 3.20
40W - k ~ 3.53

100W - k ~ 4.54
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Methoxymethylsilane Summary
 Able to use DFT to predict CVD chemistry for low

power systems
 Low-k films from precursors only but not above

percolation of rigidity
 Addition of oxygen

 Get only T and Q groups
 k is high (>4)

 Creation of T groups with 3MOMS in reducing
environment
 Dielectric constant ~3
 Stay above percolation of rigidity  harder films

 At high power, lose selectivity and increase k
 Operating at low power allows for as much

control over the chemistry as possible in a
plasma system
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Conclusions

 DFT applied to CVD system
 Screen precursors for intelligent material

design
 Discover fragmentation patterns
 Study primary reactions
 Apply for low power systems

 PECVD of low-k OSG
 Low power depositions correspond with

predicted chemistry
 Novel use of reducing environment – designed

from DFT
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