Processes for the removal of perfluorooctane sulfonate (PFOS) from semiconductor effluents

Valeria Ochoa, Jim A Field and Reyes Sierra

Dept Chemical and Environmental Engineering
University of Arizona

E-mail: ochoaval@email.arizona.edu

Chemistry

Perfluorinated alkyl surfactants (PFAS)

PFOS [CF₃(CF₂)₇SO₃-]

Properties:

- repeal oil, stain, grease and water
- reduce surface tension better than other surfactants
- work well under harsh conditions

Uses

- > Anthropogenic compounds
- > Consumer products for > 50 years

Importance

- Photoacid generator (PAG) and surfactant in the photoresist.
- Surfactant in top and bottom antireflecting coatings, TARCs and BARCs

Photolithography and Semiconductor industry

PFOS makes a unique contribution !!!

Regulations

- ➤ In 2000 3M announced withdrawal of PFOS and related compounds effective in 2002.
- ➤ US EPA issued a proposed Toxic Substances Control Act (TSCA) and Significant New User Rule (SNUR) later in 2002 forbidding the use of PFOS with exemptions for semiconductor industry.
- ➤ In January 2006, EPA asked companies to reduce the PFOA emissions by 95% by 2010 and completely eliminated by 2015.
- ➤ In April 2006, EPA issued a SNUR to limit the use of 183 perfluoroalkyl sulfonates.

Alternatives

PFBS [CF₃(CF₂)₃SO₃-]

Compound	BCF
PFBS (C ₄)	< 1
PFHS (C ₆)	59
PFOS (C8)	3100

Fluorotelomers

$$CF_{2} = CF_{2}$$

$$C_{3}CF_{2}(CF_{2}CF_{2})_{n}I$$

$$\downarrow$$

$$CF_{3}CF_{2}(CF_{2}CF_{2})_{n}CH_{2}CH_{2}I$$

$$\downarrow$$

$$CF_{3}CF_{2}(CF_{2}CF_{2})_{n}CH_{2}CH_{2}OH$$

Martin et al. (2003) Environ. Tox. Chem. 22:196

Giesy et al. (2001) Environ. Sci. Tech. 35:1339

Kannan et al. (2004) Environ. Sci. Tech. 38:4489

Renner (2004) Science 306:1887

Challenges

- > Recalcitrant
 - C-F bond (476 KJ/mol) vs C-H (413 KJ/mol)
 - absence of structures susceptible to electrophilic or nucleophilic attack.
 - perfluorinated tail
- Not known to hydrolyze, photolyze or biodegrade under environmental conditions.
- > Long range transport of volatile precursors

PFOS is the ultimate degradation product of PFAS family !!!

Treatments

- > Incineration
 - Preconcentration procedures
 - High cost (\$3-4/gallon)
- ➤ Ion exchange (Lampert et al, 2003)
 - Poor selectivity
- > Activated carbon (Lampert et al, 2003)
- ➤ Ultrasonic irradiation (Moriwaki et al, 2005)
 - 60% PFOS degradation (argon atmosphere for 60 min)
 - PFOA and short-chain PFAS.
- > Zero-valent iron in subcritical water (Hori et al, 2006)
 - 50% F- release (350 °C for 6 h)
 - CHF₃ in gas phase

Extreme conditions !!!

Objectives

- Develop analytic methods to detect PFOS in environmental samples based on:
 - 19F NMR
 - HPLC-suppressed conductivity ion chromatography

- Evaluate removal of PFOS from semiconductor effluents by:
 - Adsorption onto activated carbon
 - Biosorption
 - Reductive dehalogenation

Analytical Methods

Common analytical techniques (GC/MS, HPLC) cannot be employed.

- HPLC/MS/MS
- Direct injection ESI/MS

Varian Unity-300

¹⁹F NMR

Advantages

- specificity to fluorine
- changes in chemical shifts
- sharp, well-resolved peaks
- no matrix interferences

Disadvantages

- low sensitivity → SPE
- time consuming

HPLC-IC

Monitor PFOS on a routine basis

Advantages

- Simple, rapid and efficient.
- Short analysis times
- Low-ppm PFOS

GAC – adsorption isotherms

- ➤ Good sorbent material
- > Removal of halogenated compounds
- ➤ Previous studies on adsorption of PFOS and related substances

Experimental set-up

- > Batch experiments
 - 30°C, pH 7.2 (48 hours)
- > HPLC-IC
- Adsorptive capacity: Langmuir and Freundlich models

Calgon F400 provided higher adsorptive capacity

Adsorption isotherms with GAC Calgon F400

Reductive dehalogenation

$$R-F + 2e^- + 2H^+ \longrightarrow R-H + HF$$

Reductive dehalogenation is the main means of degradation of highly halogenated organics. Eg. PCE, PCBs, PBDEs.

Biomimetic Reductive Dehalogenation

Biomimetic reductive dehalogenation of PFOS with Ti(III) citrate and cobalamin at 30 °C and pH 7.3

Optimization of kinetics

18 % defluorination corresponding to 3 mol F⁻/ mol PFOS

Cobalamin vs Cobalt

Organometallic enzyme cofactor is responsible for degradation

Conclusions

- ➤ Detection and quantification of PFOS in environmental samples by ¹⁹F-NMR and HPCL-suppressed conductivity IC (higher sensitivity and short analysis times)
- ➤ GAC was shown to be a promise treatment technique for removal of PFOS (high adsorptive capacity at < 1 mg/l)
- > PFOS is susceptible to biomimetic reductive dehalogenation by cobalamin/Ti(III) citrate.
- ➤ Microbial reductive defluorination of PFOS might be possible

Acknowledgements

Dr. Reyes Sierra and Dr. Jim Field

Dr. Neil Jacobsen

Beshoy Latif

Field-Sierra group

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Industrial liaisons

Walter Worth (Sematech)

Tim Yeakley (Texas Instruments)

