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Objectives

• Develop methods for removing Cu2+ (electrochemically), H2O2

(catalytically), and other contaminants from wastewater 
generated during CMP.

• Build a prototype reactor and pilot test on real CMP 
wastewater.

• Estimate total costs of ownership for reclaiming CMP 
wastewater.
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ESH Metrics and Impact
1. Reduction in emission of ESH-problematic material to the 

environment

• Eliminate the disposal problems associated with membrane 
concentrates.

• Eliminate the disposal of Cu-laden nanoparticles into 
hazardous waste landfills.

2. Reduction in the use of natural resources (water and energy)

• Reclaim CMP wastewater for reuse.

• CMP wastewater accounts for up to 30% of fab water use.

3. Reduction in the use of chemicals

• Eliminate the need for pH adjusting chemicals and reducing 
agents that add to TDS load.

• Eliminate the need for activated carbon regeneration.
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Opportunity statement

• Natural Resources: Water Conservation
• CMP accounts for 30% of water use in the fab

• CMP waste water is generated at 25-40m3/day/tool or 500-750m3/day for a 20-tool fleet (0.15 to 
0.2 MGD)

• CMP waste waters are not broadly reclaimed at present w/in Intel

• Use of reclaimed CMP waste in industrial waters could, for example, easily supply 0.1 MDG for 
use in cooling towers, or provide feedstock for URW system

• Bulk Chemicals: Reduction of Acid/Base Use
• pH adjustments are done electrochemically and economically  no need to purchase, ship and 

store acids and bases to implement the technology

• Equipment and Process: Green Alternative
• electrochemical methods avoid addition of salt (e.g. Cl− and SO4

2−) and generation of brine 
streams  better salinity management in areas such as the Desert SW United States

4



SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Current Research and Differentiators 
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Present treatment methods include:

1. Chemical pH adjustment

2. Addition of reducing agents

3. Solid/liquid separation (MF, UF, RO)

4. Ion exchange

Drawbacks to current methods include:

1. pH adjusting chemicals increase TDS (e.g., Cl-

or Na+)

2. The need for addition chemical reducing 

agents to remove H2O2 that increase TDS

3. The generation of brine solutions from ion-

exchange regeneration

4. The generation of concentrates from 

solid/liquid separations

CMP waste characteristics

• 5 - 20 ppm of  dissolved copper

• 500 - 1000 ppm of total suspended solids (TSS); 

50 to 600nm particles of silica, alumina, ceria 

and/or polishing pad

• 100 - 400 ppm of total dissolved solids (TDS)

• organic complexants (e.g., citric acid)

• organic corrosion inhibitors (e.g., benzotriazole)

• oxidizing agents (e.g., H2O2)

Standard separate treatment steps†

1. oxidizer removal 

2. organics removal

3. TSS reduction

4. trace metal removal

†no order implied
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Proposed Approach
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pH Adjustment Peroxide 
destruction

Cu-CMP waste

Copper platingCopper 
Ion exchange

Electrochemical IX regeneration

Reusable water stream for mechanical systems, RO feed, etc.
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Influent pH =2.5; UV-254 nm

y = -30.778x + 2926.3

R2 = 0.9959

y = -33.992x + 1143.3

R2 = 0.9638
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Peroxide Destruction

• Conducted tests on six possible peroxide destruction catalysts.

• Conducted tests on ultrasonic and UV-light peroxide destruction.

• Pyrolox® (pyrolusite-MnO2) catalyst determined to be the most effective.

• H2O2 destruction rates with both 185 and 354 nm UV light were too slow 

for practical implementations.
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Peroxide Destruction

• Pyrolox catalyst compared to activated carbon catalysts (Filtrasorb® 

and Centaur®)

• pH 3, in the absence of chelating compounds

• Activated carbon and pyrolox can perform identically under these 

conditions
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Peroxide Destruction

Pyrolox excels as a peroxide destruction catalyst at neutral and high pH 

values
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Peroxide Destruction

Pyrolox maintains its effectiveness in the presence of chelating 

compounds.
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Electrochemistry Background

• Why electrochemistry?

• elimination of chemical additives

• elimination of secondary waste stream production 
requiring further treatment or disposal (e.g., ion 
exchange brines)

• small footprint, low capital and operating costs
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Electrochemistry Background

Copper plating: net result of the process is copper removal from 
the liquid and a lower pH.

Copper removal:
Cu2+ + 2e- → Cu0

Competing reaction:
2H+ + 2e- → H2

Counter-reaction:
H2O → 2H+ + ½O2 + 2e-

12



SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Electrochemistry Background

Electrochemical pH adjustment: pH is increased on one side of 
the membrane and lowered on the other side

Acid consumption (base 
production):

2H+ + 2e- → H2

Acid production:
H2O → 2H+ + ½O2 + 2e-
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Electrodeposition of Cu2+ in 
Flow-through Reactor

Copper Removal Flow-Through Reactor

y = -0.036x + 0.965

R2 = 0.9902
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Cu deposition occurs rapidly in flow-through 
reactor. (Initial concentration of 
40 mg/L.)
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Recirculating
feed stream

Titanium coil

Ion exchange 
membrane

Wrapped carbon 
cloth core
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Electrodeposition of Cu on Carbon Cloth 
Cathode

Copper Removal at pH=4
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• Investigated the effect of chelating agents on electrodeposition of Cu in batch 
reactors in solutions with low and high pH values.

• Ethylenediamine (EDA) and glycine do not affect Cu deposition rates.
• Cu deposition occurs at both low and high solution pH values.
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Commercial Scale Reactors
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Effective Operating Ranges for Metal 
Removal Technologies
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Chemical Precipitation

Ion Exchange
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Experimental System

• Copper plating system:

• Renovare M100 RenoCell 
(bench scale test system)

• S-930 Purolite cation exchange 
resin

• Chelating, iminodiacetic 
functional groups
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          Anode Reaction

H2O 2 H+ 0.5 O2 2 e



Cathode Reaction

Cu2 2 e Cu0
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Copper Plating Only

Copper plates at a constant rate at high concentrations, and 
follows a first-order rate law at low concentrations.
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Copper Plating Only

Copper plating rate depends on temperature, flow rate, current
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7.5 A, ~6 lpm
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Ion Exchange Resin Regeneration Only

Copper removal from the ion exchange resin can be 
approximated using first-order models, although knowledge 
of the isotherm can improve the description of the process.
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Finding the Isotherm

Copper removal from the resin happens quickly compared to 
copper plating → the liquid concentration stays close to 
equilibrium with the resin
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Combined Resin Regeneration Process

Process model:

change in copper 
in the phase amount of 

copper plated

copper pulled 
off resin

isotherm
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Combined Resin Regeneration Process

• Modeling can predict both liquid and solid phase Cu2+ concentrations

• Modeling will be used to scale-up from prototype to full scale system

Parameters:  VMIX = 6.0 L; VRR = 3.4 L; VP = 3.0 L; ε = 0.3; Km = 0.162 min-1

Isotherm: cliq = (1/(1.97 × 10-3)) ×(csol/(18.6 – csol)), cliq in mg/L, csol in mg/g
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Proposed Treatment System (e.g.)

1. Peroxide is oxidized using Pyrolox catalyst

2. Copper is removed via ion exchange, the resin for which can be 
regenerated

3. Result is a clean water stream and concentrated solid slurry
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Proposed Treatment System

• Biggest economic 
concern is the filtration

• Pall Corp. filters -
$1.80-$3.20/1000 
gallons

• Other costs:

• Electricity for plating

• Initial investments for pyrolox and ion exchange media 
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Proposed Treatment System
• Economic benefits:

• Recovery of copper

• Recovery of water stream – avoids costs for municipal sewer 
and fresh water

• e.g. Rio Rancho, NM, sewer costs are $6.30/1000 gal and 
water costs are $3.24/1000 gal

• After filtration, at least $6.34/1000 gal for other treatment

• At 300,000 gallons/day, this is about $700,000/year for 
recovery of capital costs or as savings

• Environmental benefits:

• Reduced water “footprint”

• Potential contaminants are kept out of sewer system
27
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Conclusions

• Hydrogen peroxide and copper can be effectively removed 
from CMP wastes using catalytic and electrochemical 
methods.

• Regeneration of ion exchange resins can be effectively 
modeled to predict system performance.

• Water reuse can be accomplished in economically feasible 
systems, with costs comparable to municipal treatment fees.
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