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ObjectivesObjectives
• Simplify multistep subtractive processing used in 

microelectronic device manufacturing 
– Develop new processes that can be integrated into current devices 

flows

– Minimize water, energy, chemical, and materials consumption
– Reduce costs

• Focus on high-k gate stack testbed
– Fabricate low defect high-k/semiconductor interfaces
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ESH Metrics and Impact: Cost ReductionESH Metrics and Impact: Cost Reduction

• Integration of selective deposition processes into current front end 
process flow could reduce ~16% of the processing costs
– Calculation based on Sematech cost model

– Eliminate eight processing steps from the gate module 
– Tool depreciation, tool maintenance, direct personnel, indirect 

personnel, direct space, indirect space, direct material, and indirect 
material were included

– Energy, waste disposal, and addition of two selective deposition steps 
were not included

• There is potential for greater ESH benefit due to minimized cost of 
raw materials and waste generated
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• Grow high-k films on semiconductors 
by activation and deactivation of 
surface sites

• Activation
– Utilize surface chemistries to activate 

substrates for high-k film growth
– Halogen, amine terminations

• Deactivation 
– Hydrophobic self assembled monolayer 

(SAM) 
• Prevents adsorption of H2O
• Prevents reaction of metal precursor

• Model systems
– Si, Ge, and III-V substrates
– High-k films by atomic layer deposition 

(ALD)
• Al2O3
• TiO2

Methods and ApproachMethods and Approach
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• Break overall reaction into two half reactions and run one at a 
time to achieve self-limiting growth
– Surfaces exposed to sequential pulses of metal and oxygen 

precursors to deposit oxide

Atomic Layer Deposition of HighAtomic Layer Deposition of High--k Filmsk Films
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ALD Reaction MechanismALD Reaction Mechanism

• Factors governing the selective deposition of high-
k film 
– Surface conditioning 
– Precursor selection 
– Deposition conditions 

• Hydroxylated surface promotes high-k growth on Si

• Two half reaction in TiO2 deposition

TiCl4(g) +  –OH � –O-TiCl3 + HCl(g)

2 H2O(g) +  –O-TiCl3 � –O-Ti-OH + 3 HCl(g)

• Deposition mechanism using TiCl4 precursor could 
be used as a model for HfCl4 precursor
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Clustered Reactor ApparatusClustered Reactor Apparatus
• In situ cleaning, high-k deposition, and surface analysis enables studies 

of surfaces without atmospheric contamination

– Important for highly reactive substrate such as III-V materials
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Deactivation using SAM ChemicalsDeactivation using SAM Chemicals
• Octadecyltrichlorosilane

– OTS
– C18H37Cl3Si
– Molecular length 26Å

• OTS SAM layer
– Formed on piranha etched 

SiO2
1-7

– 48hrs in 10mM OTS in 
toluene2-4,6

– 26Å Thickness1-6

– 110°water contact angle 1-6

– Deactivates for 50 ALD cycles 
of HfCl4 or Hf[N(CH3)2]4 and 
H2O2-5

– Longer deactivation for larger 
metal precursors such as 
CH3C5H4Pt(CH3)3  or 
Ir(acac)32,7
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SAM Formation and DefectsSAM Formation and Defects

• Unblocked hydroxyl group
– Difficult to fill in even with small SAM 

molecules

• Trapped water in SAM
– ALD water pulse doesn’t stick in SAM

• Open Si-O-Si bond
– Better (more complete chemical 

oxidation)
– Nitric acid etch and SC1 cleaning

• Polymerized SAM molecules laying 
down on surface

– Cleaning and re-exposing surface to 
SAM

• Open grain boundaries between SAM 
islands
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XPS Peak AnalysisXPS Peak Analysis
• Well/uniformly 

hydroxylated starting 
surface
– 4/5th of defects removed 

with initial SC1 or nitric 
acid prep including most 
grain boundaries

• Poor grain boundaries or 
small openings in SAM
– 1/3rd of defects removed 

with TMCS
• Open OH-groups

• Polymerized molecules 
– Last 1/5th of defects
– Exposure time is critical
– More extractions helps 

speed process up

50 and 100 ALD 
cycles shown
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Extraction ResultsExtraction Results
• 48hr exposures create extra polymerized molecules on SAM
• Not seen for 24hr exposures
• Two 2hr OTS exposures with 1 extraction is the minimum time for a 

dense enough SAM to deactivate TiO2 ALD
– At limit of XPS

• Four 1hr OTS exposures with 3 extractions forms a good enough SAM 
to deactivate TiO2 ALD deposition for up to 100 cycles
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HF dip on OTSHF dip on OTS

• 4hr OTS SAM 
formation/extraction 
process

– 1/100 HF dip for 30sec 

– 1/100 HF dip for 5min

– 49% HF dip for 2sec

– Tape adhesion test
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Conclusions Conclusions 

• Achieved deactivation of TiO2 ALD for 100 
cycles with only 4 hours of OTS SAM exposure
– Shortest timescale for any successful ALD deactivation
– 1/12th of the typical timescale for ALD deactivation1-4

– Previous shortest time scale was for Pt ALD deposition 
from CH3C5H4Pt(CH3)3 and air, which required 12 hours of 
OTS exposure1

• Discovered SAM is stable in dilute HF solutions
– Any aqueous based solutions will be prevented from 

reaching the Si-O bonds due to the hydrophobic nature of 
the SAM, thus preventing etching of the SAM
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Future WorkFuture Work
• Test TMCS with SAM extraction process

– Replace OTS with TMCS in last step of extraction
– Does this extend the number of deactivated cycles?

• Create way of efficiently vaporizing OTS for SAM vapor 
delivery

• Investigate vapor phase ozone and gas phase HF/vapor 
treatment to increase and control hydroxylation of oxide 
surfaces 

• Characterize SAM layers
– Thermal stability for deactivation
– Durability for large numbers of ALD cycles 
– Degradation and repair of SAMs layers

• Can TMCS be used to repair SAM without creating polymer 
defects?
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