
University of Arizona e-Seminar Series

<u>A Review of Variability Reduction Strategies</u>: Intrinsic Advantages of e-Sulfuric and Single Wafer Cleaning

David Hilscher October 9th, 2011

The Power of Lean Transformation

Reduction in Wets Variability

- Goals of Presentation:
 - 1) Review Sources of Wets Variability & Variability Reduction Strategies
 - 2) Briefly introduce electrolyzed sulfuric acid as a pollution prevention technology. (in context of Variability Reduction)
 - 3) Describe how single wafer cleaning incorporates many variability reduction strategies intrinsically.

Variability in Wets Processing

Types of Variability

- 1. Bathlife effects (Time driven)
- 2. Bath loading effects (Wafer driven)
- 3. Poor wetting
- 4. High particle addition
- 5. Dissolved gas
- 6. Charge/electrochemical
- 7. Poor particle removal
- 8. Metallic impurities

Typical Effect of Variability

Etch rate (resist strip) variation.

Degraded FM (foreign material), etch rate

Unetched films->missing silicide, missing sigma shapes.

Multiple defects. HF etches (hydrophobic wafers) most challenging.

Particle removal efficiency (megasonics) Unwanted metal etch

Contact / Via Opens

Multiple defects (blocked implant, embedded contam, blocked silicide...)

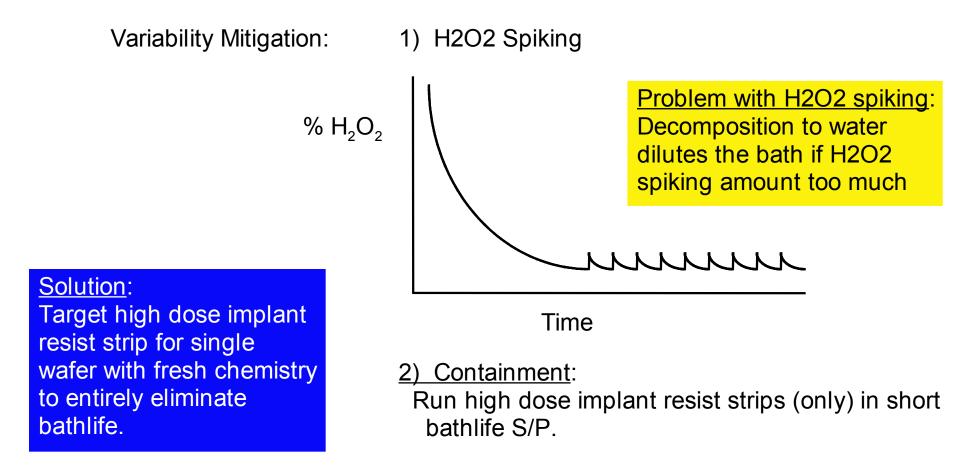
Polysilicon bumps, crystallographic etch, polysilicon etch, gate oxide relability.

Example of <u>Time-Driven Variability (Bathlife)</u> in Wets: H2O2 Decomposition in Sulfuric/Peroxide Baths (Resist Strip)

- Sulfuric / Peroxide used for resist strip
- Active species in Sulfuric / Peroxide requires H2O2 to make:

 $H_2O_2 + H_2SO_4 \rightarrow H_2SO_5$ (Caro's Acid) + H_2O

Variability Problem:


Rapid decomposition of H_2O_2 .

 $H_2O_2 \rightarrow \frac{1}{2}O_2 + H_2O$

Sample	$\% H_2O_2$	H_2SO_4
New Bath #1	1.18	82.09
New Bath #1 After 235 Wafers	0.09	82.46
New Bath #2	1.15	80.85
New Bath #2 After 378 Wafers	0.07	83.09

(Data with H2O2 spiking turned on)

Example of <u>Time-Driven Variability (Bathlife)</u> in Wets: H2O2 Decomposition in Sulfuric/Peroxide Baths (Resist Strip)

<u>Time-Driven Variability (Bathlife)</u> in Wets: e-Sulfuric as a Solution to H2O2 Decomposition Variability Reduction Approach: Remove the <u>variability source</u> altogether. (Eliminate Peroxide) \bigcirc **SPM Chemistry** $H_2SO_4 + H_2O_2 \longrightarrow H_2SO_5 + H_2O_5$ HO - S - O - OH**Problem:** $H_2O_2 \longrightarrow \frac{1}{2}O_2 + H_2O$ (Dilution of bath) **Electrolyzed Sulfuric Acid** \bigcirc () $2 H_2 SO_4 \longrightarrow H_2 S_2 O_8 + 2 H^+ + 2 e^-$ HO - S - O - S - OH $H_2SO_4 + H_2O \longrightarrow H_2SO_5 + 2H^+ + 2e^-$ Side Reactions $2 H^+ + 2 e^- \longrightarrow H_2$ $3 H_2O \rightarrow O_3 + 6 H^+ + 6 e^-$ "e-Sulfuric Qualification at IBM", Charles Taft, David Hilscher, Sandi Merritt (IBM),

Tatsuo Nagai, Toru Otsu (Kurita Water Industries LTD), David Harris (Kurita America Inc.) Page 7 dharris@kuritaamerica.com/972-484-4438 ISMI Proceedings Sept 2011.

Approach for e-Sulfuric Introduction

Qualify monitor wafer reclaim application first

- > Keeps asset productive immediately (Fab loading about 0.5 tools)
- > Demonstrate stability while product qualifications take place.
- Validate both post-ash and "wet only" resist strip operations
 - > 45nm & 90nm spacer level wet cleans are primarily post-ash
 - > 45nm & 90nm pre gate oxidation deep well levels are primarily "wet-only"

Groundrule: Implant dose levels 1E15 or less for "wet-only".

(Wet benches with S/P themselves were ineffective above those levels.)

Avoid "novel" materials for initial qualifications

Success Criteria:

Page 8

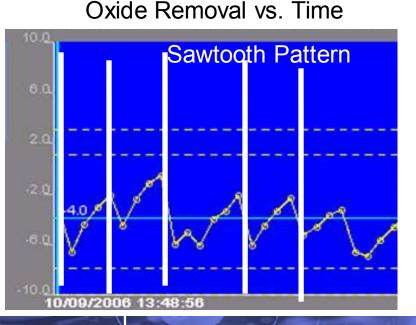
- Equivalent monitor FM
- Equivalent TXRF

- Equivalent product PLY
- Equivalent wafer final test yield
- Device Equivalence sufficient to allow "Mix and Match" of S/P & e-Sulfuric

"e-Sulfuric Qualification at IBM", Charles Taft, David Hilscher, Sandi Merritt (IBM), Tatsuo Nagai, Toru Otsu (Kurita Water Industries LTD), David Harris (Kurita America Inc.) dharris@kuritaamerica.com/972-484-4438 ISMI Proceedings Sept 2011.

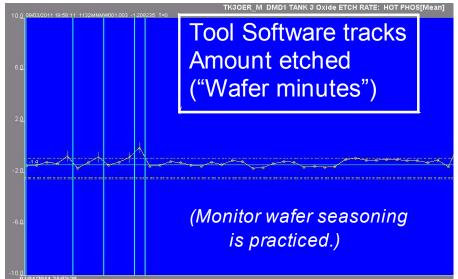
Benefits of e-Sulfuric

- Reduced chemical exchanges improve sulfuric tank availability.
 (Incremental capacity increase possible without new tool add)
- Reduced sulfuric acid and hydrogen peroxide use.
- Reduced chemicals for waste treatment. (NaOH)
- Variability reduction more consistent performance than S/P.


"e-Sulfuric Qualification at IBM", Charles Taft, David Hilscher, Sandi Merritt (IBM), Tatsuo Nagai, Toru Otsu (Kurita Water Industries LTD), David Harris (Kurita America Inc.) dharris@kuritaamerica.com/972-484-4438. ISMI Proceedings Sept 2011.

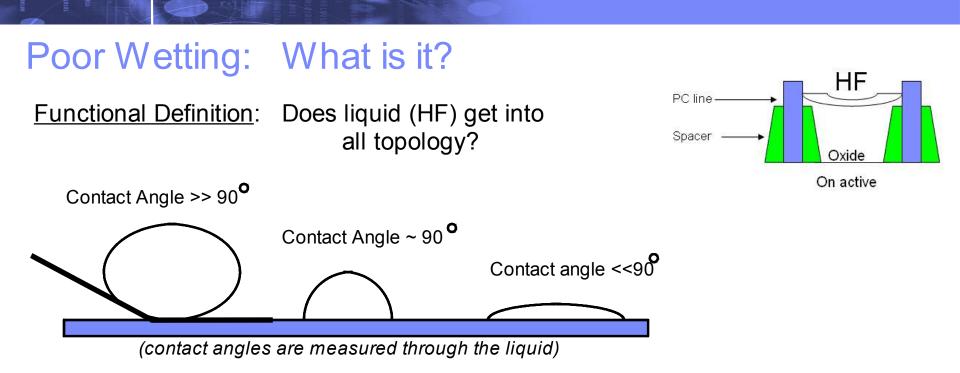
Page 9

Example of <u>Wafer-Driven Variability</u> in Wets: Hot Phosphoric Acid for Selective Nitride Removal (Etch Rate)


- Used for nitride removal selective to oxides (140:1 Pad Nitride / Pad Oxide)
- Processing done in a boiling liquid (150-170C)
- · Variability Problem: Oxide etch rate drops off exponentially with silicate loading

Variability Reduction Solution: Partial Drain / Fill (Bleed/Feed)

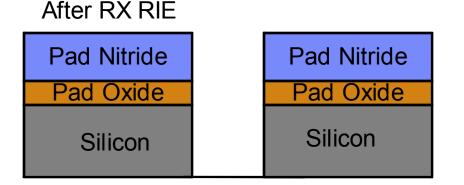
Oxide Removal vs. Time


EAQ (Exchange Adjusted Quantity)

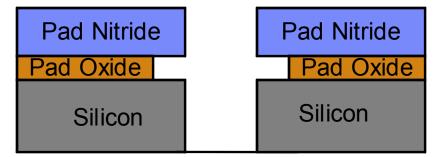
Variability Reduction Solutions/Strategies in Wets Processing

Types of Variability	Variability Solutions Available
1. Bathlife effects (Time driven)	Spiking (Better w/ feedback loop) Partial Drain / Fill or "Bleed & Feed"
2. Bath loading effects (Wafer driven)	Change the chemistry Single Use Chemistry

- 3. Poor wetting
- 4. High particle addition
- 5. Dissolved gas
- 6. Charge/electrochemical
- 7. Low particle removal
- 8. Metallic impurities

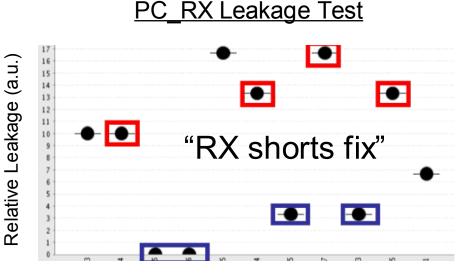

HF solutions do not like to "wet" polysilicon or nitride

Options to Improve


- 1. Wet with water first.
- 2. Use SC1 to wet by growing a chemical oxide.
- 3. Oxidize with ash or plasma ozone clean
- 4. Evaluate surfactants.

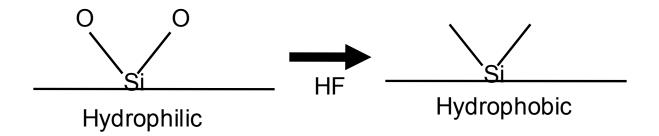
"NPN Yield Improvement with Ozone Surface Treatment Prior to Emitter Poly Deposition" T. Tran-Quinn, N. Bell, R. Cook, M.S. Fung, J.W. Andrews, D. Hilscher, D. Szmyd, V Saikuma, R. Ketcheson, P. Kellawon, S. Cavelli, ASMC Proceedings, 2003.

Influence of Wetting on Electrical Performance RX Post RIE Clean



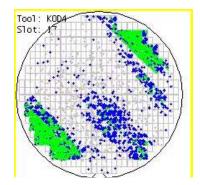
After RX RIE Postclean (with HF)

(Subsequent RX liner oxidation and later etches round the corner of Si for lower leakage.)


<u>Key to M1 Leakage Chart</u> Dots Only = POR (Straight into 40:1 BHF) Red Boxes = Straight into 300:1 DHF Blue Boxes = Placed into water and then ramped to 300:1 DHF.

Individual wafer results shown (split lot)

Wets Variability – High Particle Addition


Systematic Exposure: HF / HCI Last Sequences (when possible)

HCI in dryer to avoid Ca deposition. (Gate Ox reliability exposure)

Strategies to Mitigate:

- 1) Reoxidize surface if possible.
 - SC 1/SC 2 (H2O2)
- 2) Single wafer if clean must be HF-last.

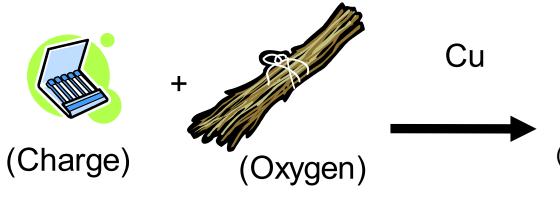
Wets Variability – High Particle Addition (Improved Filtration as a Mitigation Strategy)

New Filter Old Filter New

Box-and-Whisker Plot

Acknowledgement: Richard Henry and Robert Zigner

Variability Reduction Solutions/Strategies in Wets Processing


Types of Variability	Variability Solutions Available
1. Bathlife effects (Time driven)	Spiking (Better w/ feedback loop) Partial Drain/Fill (Bleed & Feed)
2. Bath loading effects (Wafer driven)	Change the chemistry Single Use Chemistry
3. Poor wetting	Avoid HF-first / HF-only Oxidize prior to HF or use SC 1 Surfactants
4. High particle addition	Avoid HF-last cleans when possible. Improved filtration

- 5. Dissolved gas
- 6. Charge/electrochemical
- 7. Low particle removal
- 8. Metallic impurities

Variability: Dissolved Gas on Megasonic Efficiency

Dissolved gasses are required to get good particle removal efficiency.

Variability: Effect of Dissolved Gas on BEOL Yield (Cu Liner Preclean)

(Cu-oxides blocking Polymer removal & Cu material loss)

Variability: Surface Charge Removal

Problem: Incoming charge from upstream tools.

Solutions: 1) DI CO2.

2) IPA

Variability Reduction Solutions/Strategies in Wets Processing

Types of Variability	Variability Solutions Available
1. Bathlife effects (Time driven)	Spiking (Better w/ feedback loop) Partial Drain/Fill (Bleed & Feed)
2. Bath loading effects (Wafer driven)	Change the chemistry Single Use Chemistry
3. Poor wetting	Avoid HF-first / HF-only Oxidize prior to HF or use SC 1 Surfactants
4. High particle addition	Avoid HF-last cleans when possible. Improved filtration
 Dissolved gas Charge/electrochemical 	Low O2 for HF increasingly important Needed for megasonics CO2 rinse / IPA rinse

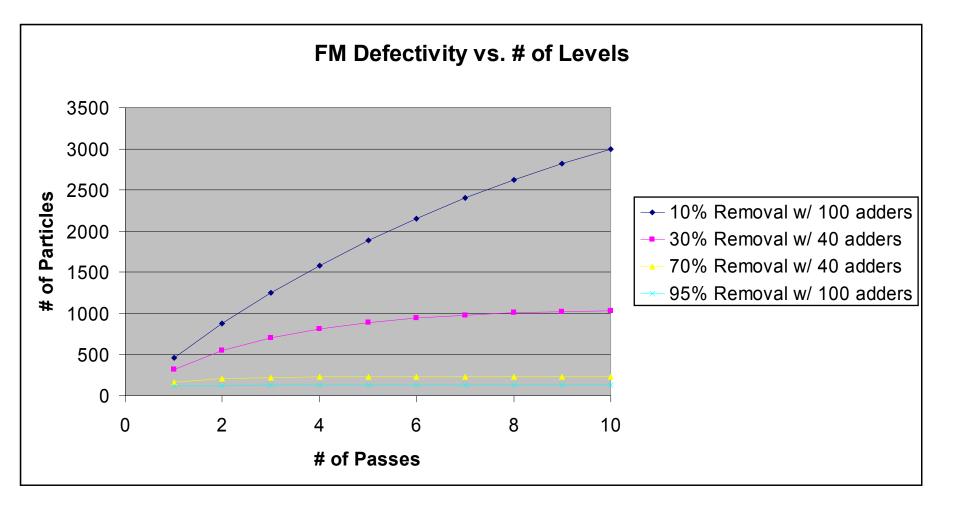
7. Low particle removal

8. Metallic impurities

Advantages of Single Wafer Tooling

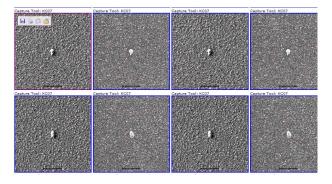
- No wafer to wafer transfer of particles
 - No scraps due to "dirty lot" running with "clean lot"
- Can process only one side of a wafer with chemistry if desired
- Can turn "off" chemistry step ~ 2 seconds vs. ~8 second minimum transfer time chemical tank to rinse tank in batch
- Fine liquid droplets generate significant particle removal efficiency.
- Better mass transfer.
- Process yield. Batching handling can result in large wafer scraps. (Stuck in tank, wafer handling)

Variability: Low Particle Removal

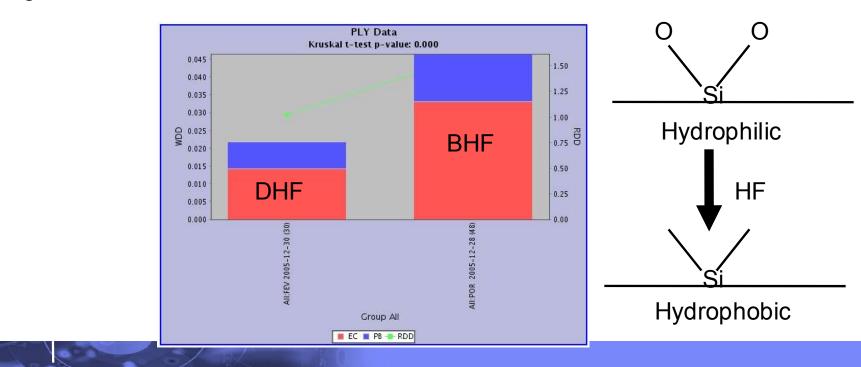

Problem: Cleaning methods must not damage sensitive patterns. (Post gate stack RIE)

Megasonics generally is too aggressive for sensitive structures.

Answer: Fine liquid droplets


Particle Adders vs. Particle Removal

Assume ~400 particle adders / level from "other tools"



Metallic Impurities Variability: Poly Bumps Defect Learning

Problem: Trace metallics catalyze the deposition of polysilicon locally resulting in a defect known as "poly bumps".

Transition from BHF (recirculated tank w/ shared wafer history) to single use DHF had a 50% reduction in these defects.

Variability Reduction Solutions/Strategies in Wets Processing

Types of Variability	Variability Solutions Available
1. Bathlife effects (Time driven)	Spiking (Better w/ feedback loop) Partial Drain/Fill (Bleed & Feed)
2. Bath loading effects (Wafer driven)	Change the chemistry Single Use Chemistry
3. Poor wetting	Avoid HF-first / HF-only Oxidize prior to HF or use SC 1 Surfactants
4. High particle addition	Avoid HF-last when possible. Improved filtration
 Dissolved gas Charge/electrochemical 	Low O2 for HF increasingly important Needed for megasonics CO2 rinse / IPA rinse
7. Low particle removal	Fine droplet at appropriate time/ pattern sensitivity setting.
8. Metallic impurities	Single use chemistry (especially HF) lon exchange filtration for solvents

Variability Reduction Solutions/Strategies in Wets Processing

Single Wafer Clean Variability Reduction Elements in Green

Types of Variability	Variability Solutions Available
1. Bathlife effects (Time driven)	Spiking (Better w/ feedback loop) Partial Drain/Fill (Bleed & Feed)
2. Bath loading effects (Wafer driven)	Change the chemistry
	Single Use Chemistry
3. Poor wetting	Avoid HF-first / HF-only
	Oxidize prior to HF or use SC 1
	Surfactants
4. High particle addition	Avoid HF-last when possible.
	Improved filtration
5. Dissolved gas	Low O2 for HF increasingly important
6. Charge/electrochemical	Needed for megasonics
	CO2 rinse / IPA rinse
7. Low particle removal	Fine liquid droplet at appropriate time/ pattern sensitivity setting.
8. Metallic impurities	Single use chemistry (especially HF) lon exchange filtration for solvents

Page 25

Summary

- The key variability reduction strategies in wets have been identified and catalogued for the extended team's reference in thinking about the new applications listed.
- e-Sulfuric is a greener technology than sulfuric/peroxide which reduces variability because it eliminates H2O2.
- Single wafer clean captures a large number of those variability reduction elements intrinsic to the nature of single wafer clean. (Why it is so successful.)