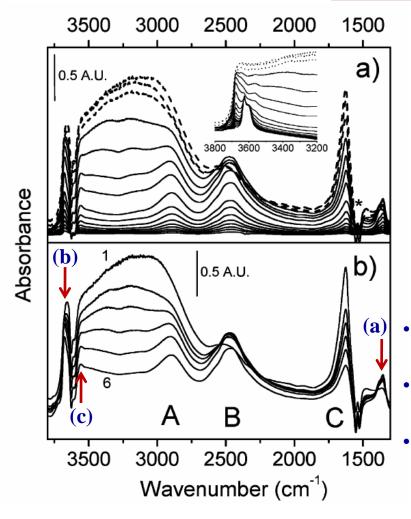
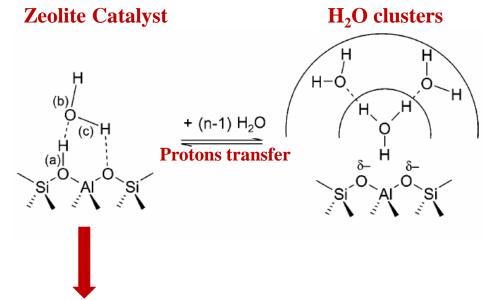

Characterization of the Surface Properties of Nanoparticles Using Moisture Adsorption Dynamic Profiling

Hao Wang

Chemical and Environmental Engineering University of Arizona

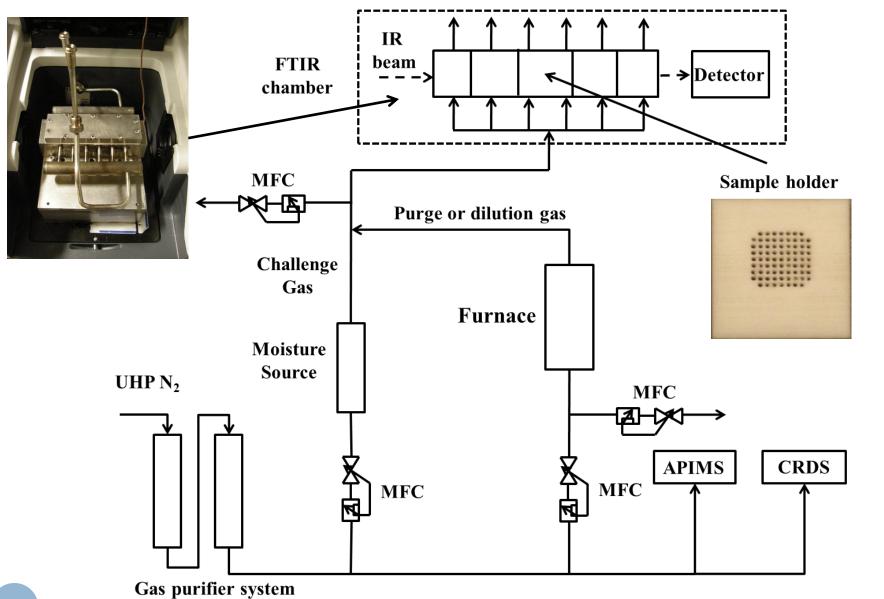

July 14th, 2011


ESH Testing and Evaluation of New Chemicals

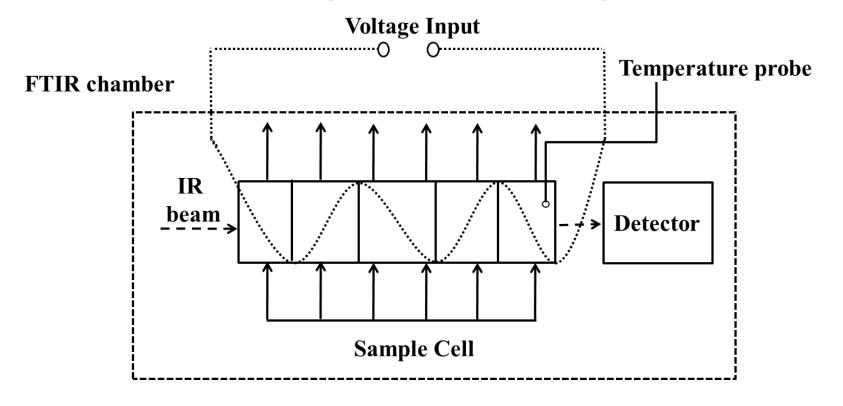
Handy, R.D., Shaw, B.J., 2007. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Society 9, 125-144.

FTIR Application on Quantitative Measurements

- (a) zeolite oxygens O-H bonds, v (O-H_{a, water}): 1355 cm⁻¹.
- (b) unperturbed O-H bonds in H_2O , v (O- $H_{b, water}$): 3670 cm⁻¹.
 - (c) O-H bonds being involved in weak H-bonds to zeolite oxygens, v (O-H_{c, water}) : 3560 cm⁻¹.

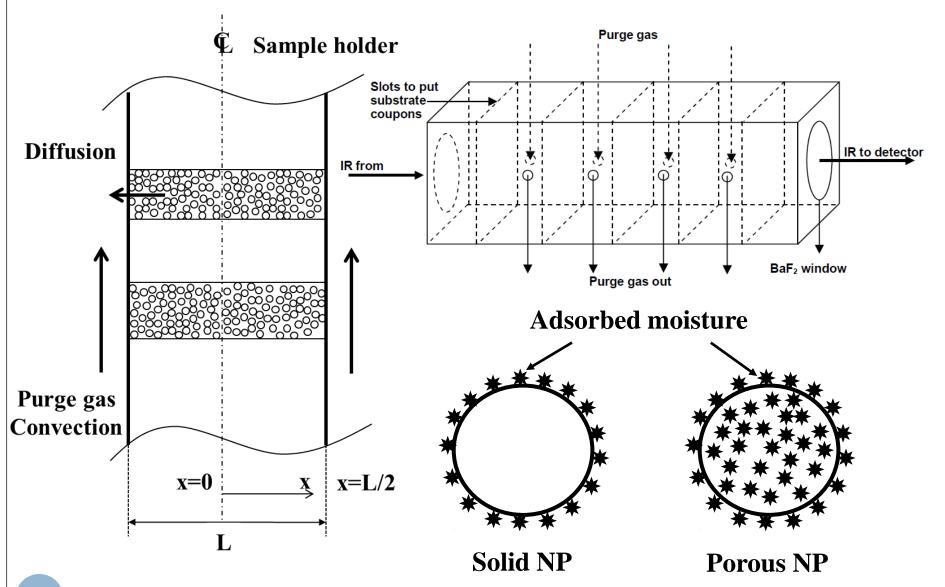

Bordiga, S et al., 2005. FTIR adsorption studies of H₂O and CH₃OH in the isostructural H-SSZ-13 and H-SAPO-34: formation of H-bonded adducts and protonated clusters. J. Phys. Chem. B 109, 7724-7732.

Objectives and Method Approach


- <u>Objective</u>: Characterization of the surface sites on nanoparticles that contribute to concentration, retention, and enhanced transport of toxic chemicals.
- Method approach: Surface hydroxylation (adsorption and desorption of contaminants).
- Materials: SiO₂, HfO₂, and CeO₂.
- <u>Parameters</u>: Oxide type, particle size, temperature.
- Results: Capacity and energetics of capture and retention of contaminants on active sites.

NPs	Supplier	APS* (reported by supplier) (nm)
CeO ₂	Sigma-Aldrich	20
SiO ₂	Sigma-Aldrich	10-20
HfO ₂	Sematech	20
HfO ₂	American Elements	100

Schematic Diagram of the Experimental Setup



Heating Element Design

Voltage Input	Temperature
0 V	25°C
30 V	55°C
45 V	80°C

Schematic Diagram of the NP Sample Holder

Mechanism of Multilayer Model

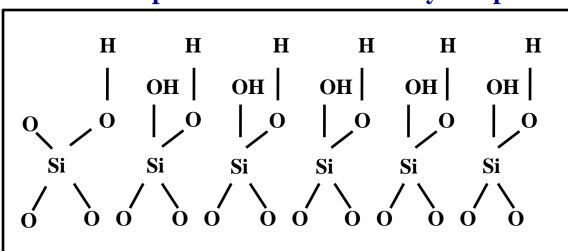
Adsorption rate coefficient

$$k_a = k_{a_0} exp(\frac{-E_a}{RT})$$

Adsorption activation energy

$$E_a = E_{a_1} \frac{C_{s_0} - C_s}{C_{s_0}} + E_{a_2} \frac{C_s}{C_{s_0}}$$

1: Chemisorption


Desorption rate coefficient

$$k_d = k_{d_0} exp(\frac{-E_d}{RT})$$

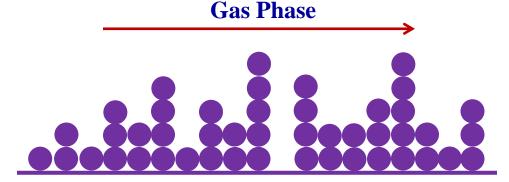
Desorption activation energy

$$E_d = E_{d_1} \frac{C_{S_0} - C_S}{C_{S_0}} + E_{d_2} \frac{C_S}{C_{S_0}},$$

2: Physisorption

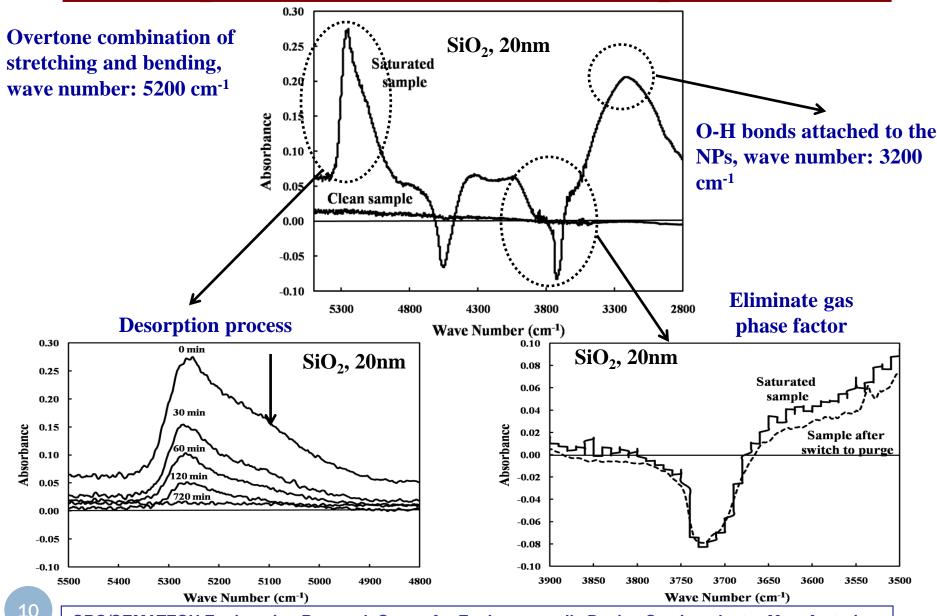
Process Simulation for Data Analysis

Adsorbent concentration in the gas phase:

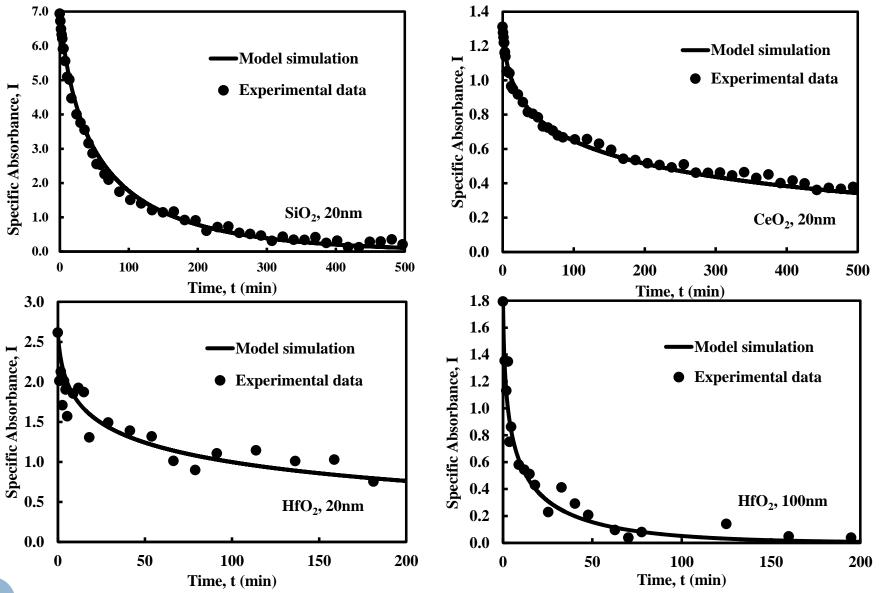

$$\frac{\partial C_g}{\partial t} = D_e \frac{\partial^2 C_g}{\partial x^2} + (1 - \varepsilon) \frac{3}{r} \left[k_d C_s - k_a C_g (S_0 - C_s) \right]$$

Diffusion term Adsorption and desorption term

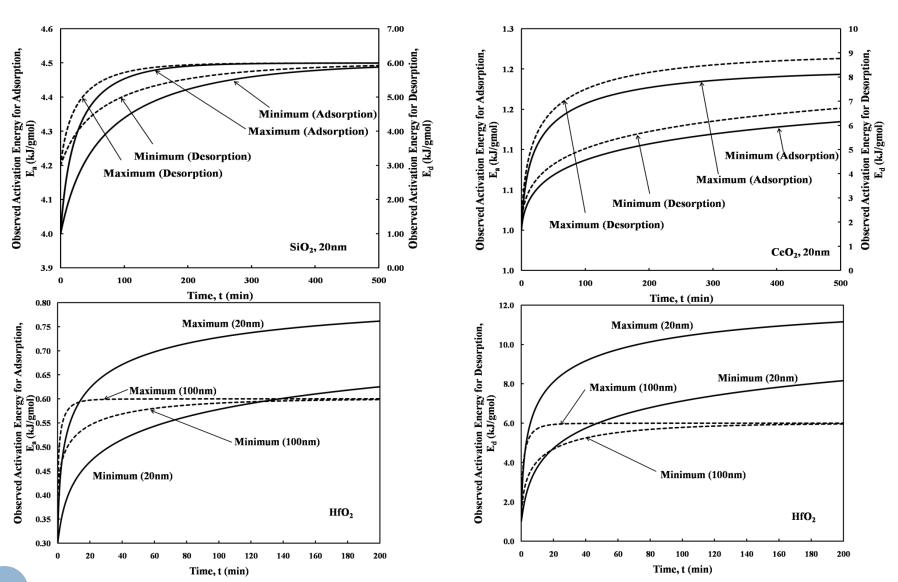
Adsorbent concentration on the surface:


$$\frac{\partial C_s}{\partial t} = k_a C_g (S_0 - C_s) - k_d C_s$$

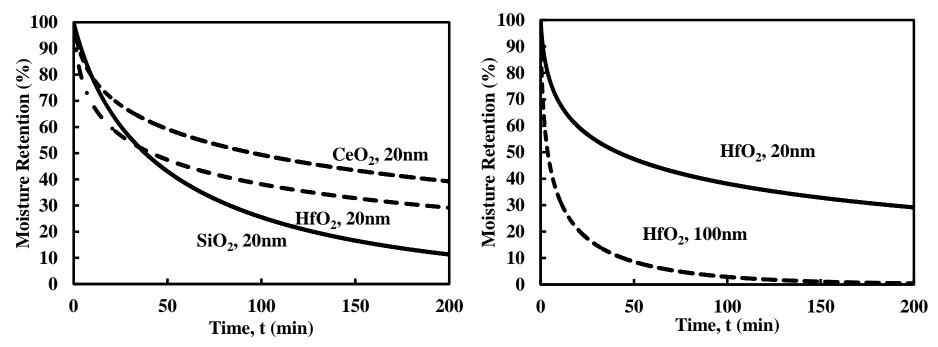
maximum capacity of the surface, gmol·m⁻² S_{o} concentration in the gas phase, gmol·m⁻³ packing porosity concentration on the surface, gmol·m⁻² radius of nanoparticle, m adsorption rate coefficient, m3·gmol-1·s-1 D_e effective diffusivity, m²·s⁻¹ desorption rate coefficient, s-1


Substrate

FTIR Spectra of Moisture Adsorption on NPs



SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing


Comparison of Adsorption Profiles of NPs

Activation Energy of Surface Processes

Effect of NP Material and Size on Surface Retention

- The surface retention characteristics depend on the material as well as on the particle size.
- The affinity of nanoparticles for adsorption and retention decreases in the order: $CeO_2 > HfO_2 > SiO_2$. The surface available sites under certain challenge concentrations decreases in the order: $SiO_2 > HfO_2 > CeO_2$.
- Nanoparticles with smaller size will have larger density of surface sites and larger surface retention capacity for most cases. They also have higher affinity for retention of contaminants.

Parametric study of Species Effect

Sample (20nm)	Maximum capacity S ₀ (gmol⋅m ⁻²)	Saturated surface concentration $C_{s,\;0}(gmol^{*}m^{-2})$	Fractional coverage θ (%)	
SiO_2	7.1×10⁻⁶ ♠	2.8×10 ⁻⁶	39	
HfO_2	1.5×10 ⁻⁶	1.1×10 ⁻⁶	73	
CeO_2	5.5×10 ⁻⁷	5.4×10 ⁻⁷	98	

Sample	$\mathbf{k}_{a,0}$	$\mathbf{k}_{\mathrm{d,0}}$	$\mathbf{E}_{a,1}$	$\mathbf{E_{a,2}}$	$\mathbf{E}_{d,1}$	$\mathbb{E}_{d,2}$
(20nm)	(m ³ ·gmol ⁻¹ ·s ⁻¹)	(s^{-1})	(kJ·gmol ⁻¹)	(kJ·gmol ⁻¹)	(kJ·gmol ⁻¹)	(kJ·gmol ⁻¹)
SiO_2	0.028	0.003	4.5	4.0	6.0	3.0
HfO_2	0.200	0.010	0.8	0.3	12.0	1.0
${ m CeO}_2$	0.800	0.003	1.2	1.0	9.0	2.0

Parametric study of Size Effect

Sample	Maximum capacity $S_0 \text{ (gmol·m}^{-2}\text{)}$	Saturated surface concentration $C_{s,\;0}(gmol\cdot m^{-2})$	Fractional coverage θ (%)
HfO ₂ (20nm)	1.5×10⁻⁶ ↑	1.1×10⁻⁶ ♠	73
HfO ₂ (100nm)	8.7×10 ⁻⁷	7.3×10 ⁻⁷	84 ↓

Sample	$\mathbf{k_{a,0}}$	$k_{d, 0}$	$\mathbf{E}_{a,1}$	$\mathbf{E}_{a,2}$	$\mathbf{E}_{\mathbf{d},1}$	$E_{d, 2}$
	$(m^3 \cdot gmol^{-1} \cdot s^{-1})$	(s^{-1})	(kJ·gmol·1)	(kJ·gmol·1)	(kJ·gmol·1)	(kJ·gmol ⁻¹)
HfO ₂ (20nm)	0.20	0.010	0.8	0.3	12.0	1.0
$\mathrm{HfO}_{2}\left(100\mathrm{nm}\right)$	1.29	0.035	0.6	0.4	6.0	1.2

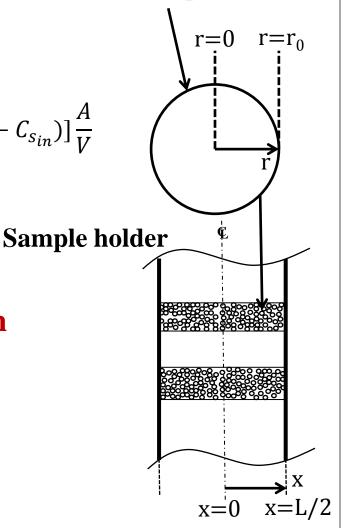
Separate Domain Process Simulation

Nanoparticle Domain

Adsorbent concentration in the gas phase:

$$\frac{\partial \mathcal{C}_{g_{in}}}{\partial t} = D_{e_{in}} \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial \mathcal{C}_{g_{in}}}{\partial r}) + \left[k_d \mathcal{C}_{s_{in}} - k_a \mathcal{C}_{g_{in}} (S_0 - \mathcal{C}_{s_{in}}) \right] \frac{A}{V}$$

Adsorbent concentration on the surface:


$$\frac{\partial C_{s_{in}}}{\partial t} = k_a C_{g_{in}} (S_0 - C_{s_{in}}) - k_d C_{s_{in}}$$

Sample Holder Domain

Adsorbent concentration in the gas phase:

$$\frac{\partial C_{g_{out}}}{\partial t} = D_{e_{out}} \frac{\partial^2 C_{g_{out}}}{\partial x^2} - D_{e_{in}} \frac{C_{g_{in}}}{r}|_{r=r_0} 4\pi r_0^2 N_v$$

Nanoparticle

Numerical Method

Discretization

Forward Euler **Method**

Crank-Nicolson Method

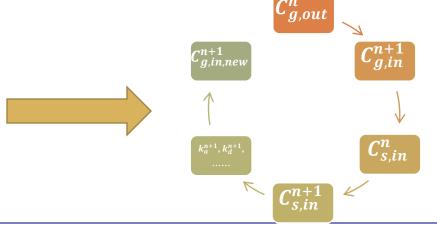
Linearization

Next Time-step Estimation

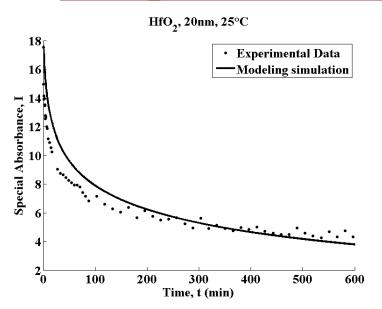
Triangular Matrix Solver

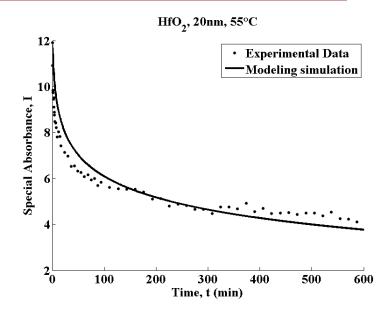
Iteration

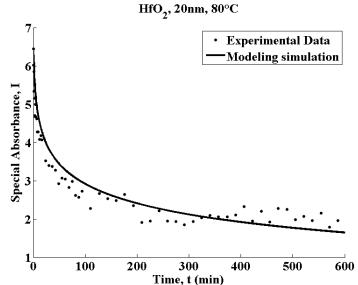
Update the new value for C_{s, in}

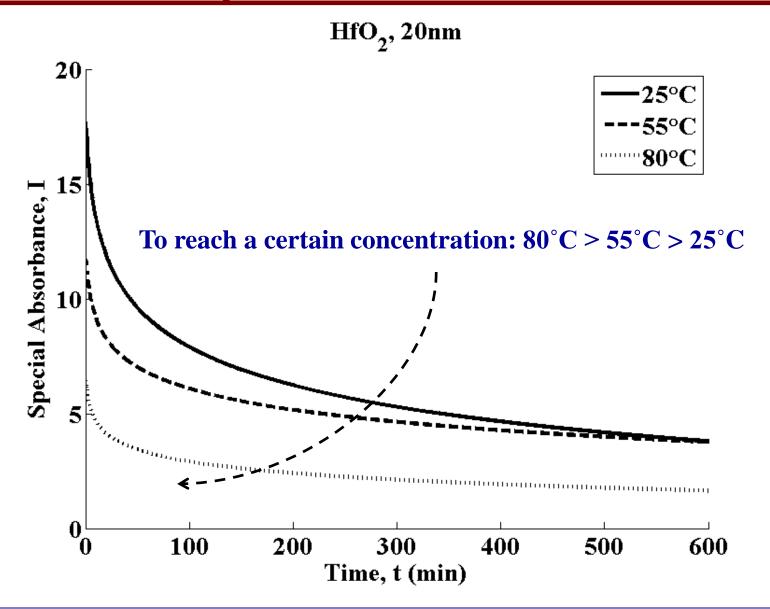

Update new value for k_a, k_d and so on

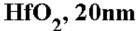
$$\frac{\partial C_g}{\partial t} = \frac{C_{g,i}^{m+1} - C_{g,i}^m}{\Delta t}
\frac{\partial^2 C_g}{\partial x^2} = \frac{1}{2} \left(\frac{C_{g,i+1}^{m+1} - 2C_{g,i}^{m+1} + C_{g,i-1}^{m+1}}{\Delta x^2} + \frac{C_{g,i+1}^m - 2C_{g,i}^m + C_{g,i-1}^m}{\Delta x^2} \right)$$

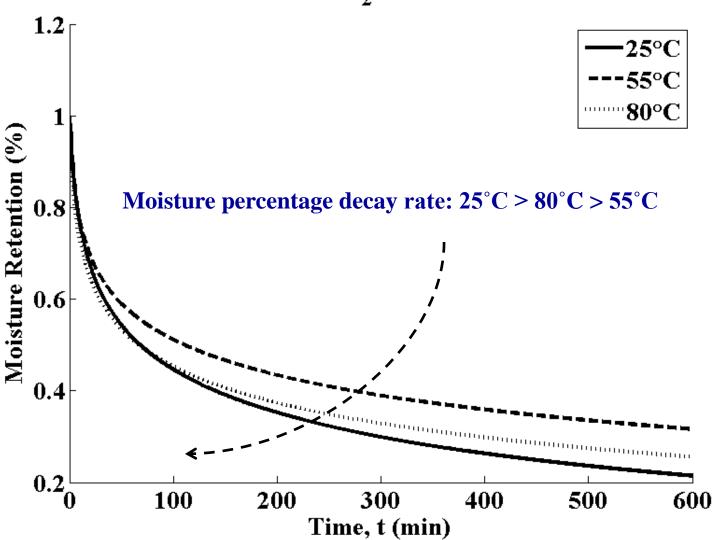

$$C_x = \frac{1}{2} \left(C_{g,i+1}^{m+1} + C_{g,i}^m \right) C_x = C_{g,i}^m$$


$$C_g = \frac{1}{2}(C_{g,i}^{m+1} + C_{g,i}^m), C_s = C_{s,i}^m.$$

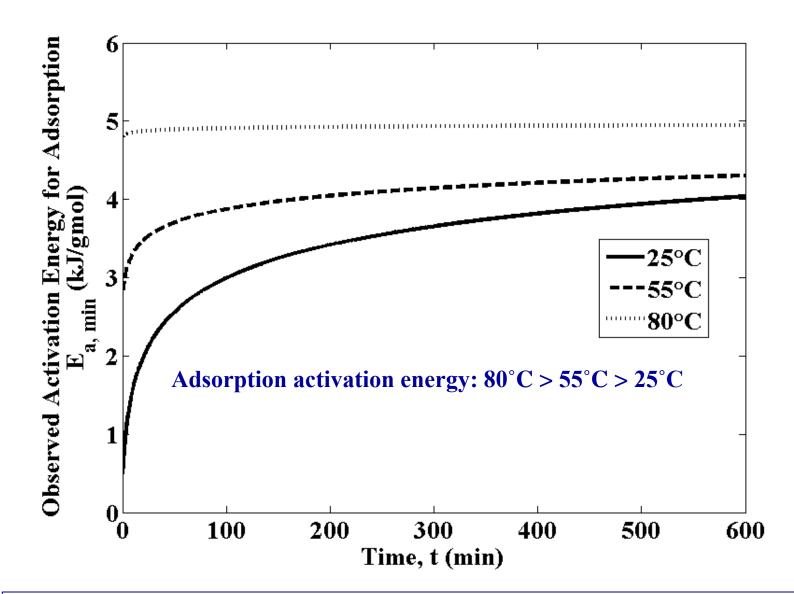

$$\begin{split} \frac{\alpha\Delta\bar{t}}{2\Delta\bar{x}^2}\bar{C}^{m+1}_{g,i+1} + & [\frac{1}{2}(\delta\bar{C}^m_{s,i} - \gamma)\Delta\bar{t} - \frac{\alpha\Delta\bar{t}}{\Delta\bar{x}^2} - 1]\bar{C}^{m+1}_{g,i} + \frac{\alpha\Delta\bar{t}}{2\Delta\bar{x}^2}\bar{C}^{m+1}_{g,i-1} \\ & = -\frac{\alpha\Delta\bar{t}}{2\Delta\bar{x}^2}\bar{C}^m_{g,i+1} + [-\frac{1}{2}(\delta\bar{C}^m_{s,i} - \gamma)\Delta\bar{t} + \frac{\alpha\Delta\bar{t}}{\Delta\bar{x}^2} \\ & - 1]\bar{C}^m_{g,i} - \frac{\alpha\Delta\bar{t}}{2\Lambda\bar{x}^2}\bar{C}^m_{g,i-1} - \Delta\bar{t}\beta\bar{C}^m_{s,i} \end{split}$$


Comparison of Adsorption Profiles of NPs

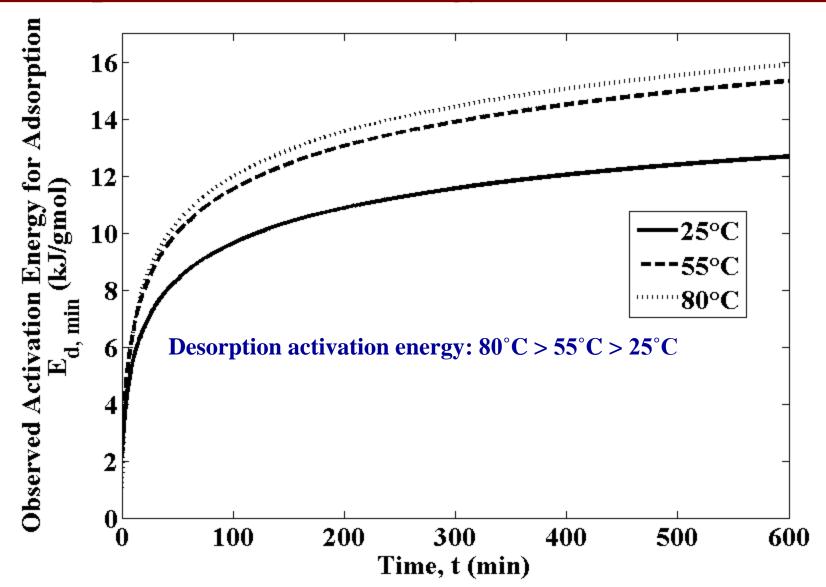




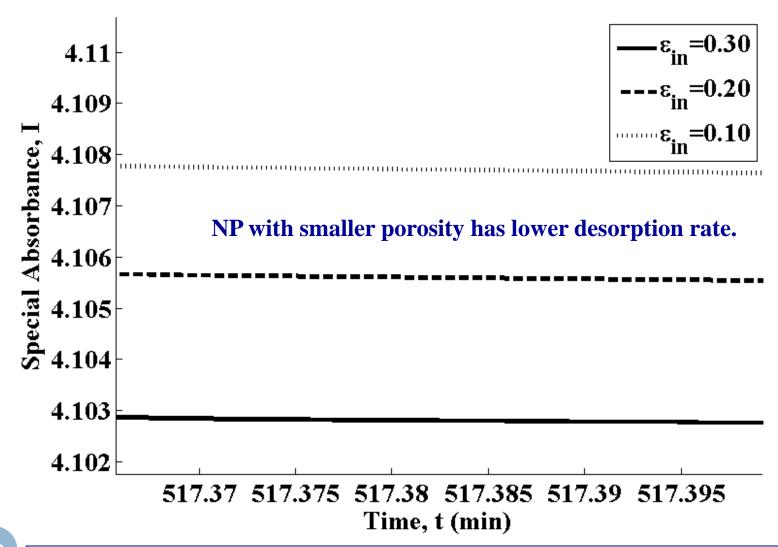
Effect of Temperature on Surface Retention



Moisture Retention Percentage



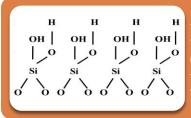
Adsorption Activation Energy of Surface Processes



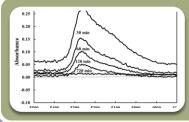
Desorption Activation Energy of Surface Processes

NP Porosity Study

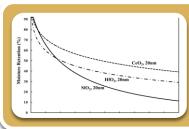
HfO₂, 20nm, 25°C

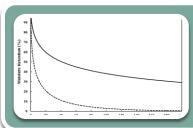


Parametric study of Temperature Effect

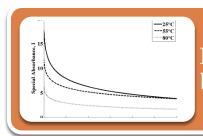

Sample	Maximum capacity	Saturated surface	Fractional coverage	
(20nm)	S_0 (gmol·m ⁻²)	concentration	θ (%)	
		$C_{s, 0} (gmol \cdot m^{-2})$		
HfO ₂ , 25°C	1.5×10 ⁻⁶	1.1×10 ⁻⁶	↑ 73 ↑	
HfO ₂ , 55°C	1.5×10 ⁻⁶	7.4×10 ⁻⁷	49	
$\mathrm{HfO_2},80^{\circ}\mathrm{C}$	1.5×10 ⁻⁶	4.0×10 ⁻⁷	27	

Sample	$\mathbf{k_{a,0}}$	$\mathbf{k}_{\mathrm{d,0}}$	$\mathbf{E}_{a,1}$	$\mathbf{E_{a,2}}$	$E_{d,1}$	$E_{d, 2}$
(20nm)	(m ³ ·gmol ⁻¹ ·s ⁻¹)	(s^{-1})	$(kJ\cdot gmol\cdot 1)$	(kJ·gmol·1)	(kJ·gmol·1)	(kJ·gmol·1)
HfO ₂ , 25°C	0.03	0.0025	5.0	/ 0.5 \	/ 15.0 \	/ 2.4 \
HfO ₂ , 55°C	0.03	0.0025	5.0	2.8	21.5	2.0 1
HfO ₂ , 80°C	0.03	0.0025	5.0	4.8	21.0	1.1

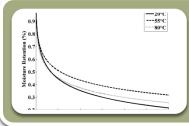

Summary and Conclusions I


Hydroxylation is a powerful method for characterization of capture and retention (adsorption/desorption) properties of NPs.

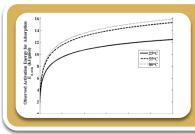
The surface retention characteristics depend on the material as well as on the particle size.

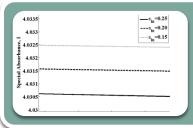


The affinity of nanoparticles for adsorption and retention decreases in the order: $CeO_2 > HfO_2 > SiO_2$. The surface available sites under certain challenge concentrations decreases in the order: $SiO_2 > HfO_2 > CeO_2$.



Nanoparticles with smaller size will have larger density of surface sites and larger surface retention capacity for most cases. They also have higher affinity for retention contaminants.


Summary and Conclusions II


Purge under the higher temperature will reach the same baseline more faster.

The affinity of HfO_2 under different temperatures for moisture retention decreases in the order: $25^{\circ}C > 80^{\circ}C > 55^{\circ}C$. The saturated surface concentration under certain challenge concentrations decreases in the order: $25^{\circ}C > 55^{\circ}C > 80^{\circ}C$.

The adsorption and desorption activation energy of moisture on HfO_2 decreases in the order: $80^{\circ}C > 55^{\circ}C > 25^{\circ}C$.

Higher NP porosity will increase the diffusivity inside of the NP, and it will have higher desorption rate.

Future Work

Keep on studying the surface properties of different NPs under various temperatures Upgrade the experimental setup to increase the energy of the IR light to get more intensity of absorbance

Upgrade the numerical model for porous NPs and increase the efficiency

Acknowledgements

Farhang Shadman, Regents' Professor, Dept. of Chemical& Environmental Engineering, University of Arizona.

Reyes Sierra, Associate Professor, Dept. Chemical & Environmental Engineering, University of Arizona.

SRC/SEMATECH Engineering Research Center