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Particles – Distributions on Wafer

 Typically we measure Particles > 0.09 m or > 0.06 m
 Particle Density ~ 1/x2

 What about Particles < 0.06 m?

?
Tencor SP1 measurement >0.09 m

~1/x2
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Particles – Distributions in Liquid

 In liquid systems:  particle density ~ 1/x3

 What about particles < 0.03 m?

Courtesy of PMS
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Particle Density as a Function of Particle Size
 So far Particle Density ~ 1/x2 on wafer and 1/x3 in liquids

 Can not continue like ~ 1/x2 or 1/x3 indefinitely

 80 Particles > 32.5nm would equate to 
84 500 particles >1nm or 338 000 particles > 0.5nm

 This would kill many gates which are 1nm thick.

 Nobody has ever seen a 1nm particle in TEM or SEM
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Particles – Distributions in Nature

>0.09 m >0.09 m

INDOOR OUTDOOR
>0.03 m >0.03 m

www.trane.com: EPA studies indicate that indoor 
levels of many pollutants may be 25 times, and 
occasionally more than 100 times, higher than 
outdoor levels. In general, indoor air is four to five 
times more polluted than outdoor air. 

Below 0.06 m, particle distributions 
starts to decrease outdoors, indoors 
below 0.03m
There are virtually no particles below 
0.01 m
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Particles – Sizes in Nature
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Particles in Gases

 Particle behavior in a gas environment
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Geometrical Configuration

A horizontal wafer in a vertical laminar flow

wafer

Uo

Particles behavior in a gaseous environment
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Particle deposition from a gas environment

 Particle deposition velocity Vd or sedimentation velocity Vs:

 N = c*Vd*t

N = areal density of particles on a wafer
c = concentration of particles in the gas environment
t = time of exposure to the gas environment
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To begin: Only Gravity and Drag Force

Vd or Vs = deposition/sedimentation velocity

 Gravity Drag Force

(+) (-)

SEDIMENTATION
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Ref : B. Donovan, Austin, March 25th 1998

V s
(c

m
/s

)

1cm/2.8 hr

1cm/28 hr

Vs (cm/s)   - Only gravity and drag

Calculated Sedimentation Deposition 
Velocity

12
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Geometrical Configuration

A horizontal wafer in a vertical laminar flow

wafer

Uo

Particles behavior in a gaseous environment
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Next: Diffusion is Added

Vd = deposition velocity

 Gravity
 Diffusion

Drag Force

(+) (-)

Deposition by sedimentation and diffusion
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Deposition Velocity by Gravity and Diffusion Together

Ref : B. 
Donovan, 
Austin, March 
25th 1998

With experimental data for Vd (cm/s)
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Next: Thermophoresis is Added

Vd = deposition velocity

Gravity
Diffusion

Drag Force
Thermophoresis

(+) (-)

Deposition by sedimentation and diffusion
in the presence of a temperature gradient
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Thermal Shielding

Thermophoresis:
– Creates a repulsive force on an approaching particle 

attributable to the temperature gradient in the air 
perpendicular to the heated surface

Repulsive : wafer is warmer than gas environment
Attractive : wafer is cooler than gas environment

Particle

Hotter Gas Molecules

Cooler Gas Molecules
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Deposition Velocity Due to Thermophoresis

Ref : B. Donovan, Austin, March 25th 1998
T = 10K/cm temperature gradient
Vth is not very size dependent
The negative sign means a repulsive force

Vth (cm/s)
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Thermophoresis (-)

Vsedimentation + diffusion(+)

Ref : B. Donovan, 
Austin, March 
25th 1998

With Temperature Gradient of 10K/cm

Deposition by Gravity and Diffusion Together with a Temperature 
Gradient
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Summary – Gas Phase

 Particles < 0.1 m do NOT settle in air (@1atm) for t < 24hr

 Particles < 0.1m follow the air flow perfectly, hence can be 
carried away with good laminar flow

 If Twafer = Tenvironment + 10 °C
– then particles < 0.1 m do NOT settle even for > 24 hr

 Once cleaned, recontamination with particles < 0.1m is 
unlikely within practical time limits, with good laminar flow
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Practical Applications of These Theories
 Maintaining laminar flow 

sweeps the particles, when 
created by moving parts, 
through the equipment and 
prevents stagnation points that 
can trap particles

 Either open “Flow-Through” 
design that takes advantage of 
the vertical laminar downflow 
already present in cleanrooms 
(e.g. some earlier tools, SEZ) 
or forced mini-environment 
(e.g. most recent tools)
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Application: Particles in a single Wafer Cleaning Tool

 Large, e.g. 6” Exhaust
 Full covered laminar flow with fan to force the air 
 Wide open bowl with gradual interfaces
 250 CFM (Cubic Foot per Minute) clean air flow per 300mm 

chamber
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Isolation of Particle Sources

 People were historically the most important source of 
particles

Original approach: Isolation of product from 
contamination, i.e. people

e.g. Wear head, beard, face covers, cleanroom 
garments, gloves, shoe covers

Newer approach: Isolation of product from contamination, 
i.e. people

e.g. Added; mini-environments, FOUPs
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Examples of Isolation
People Isolation

Atmospheric/particles Generated
-> Mini-environment with Laminar Flow

Vacuum/particles Generated
-> Mini-environment without Laminar Flow

Atmospheric/ No particles Generated
-> Mini-environment without Laminar Flow
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Entire Cleanroom is Over Pressurized

Dirty air from the outside is 
disastrous

Correlation of particle concentration to over pressurization:
When under pressurized, particle concentration in air increases
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Ideal Mini-environment Is Over Pressurized

 Flow from inside the mini-
environment to the 
outside by overpressure

 Ideally P1<P2

 However, inside wet 
chemical tools P1>P2,
because of safety

P1

P2
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Currently Most of the Particles are from the Process itself

 Typical Example: HF-last
 Particles are coming from the wafer itself!
 O2 + Si    SiO2 particles
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Remark: Laminar Flow Does Not = Vertical Flow

 Traditional:
– Laminar Flow = Vertical

 Laminar flow can also be 
horizontal

 Laminar flow can be even 
more complex
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Most Ideal Laminar Flow on a Spinning Wafer

 Follow the natural flow lines due to spinning
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Next: Electrostatics is Added

Vd = deposition velocity

Gravity
Diffusion
Electrostatic Attraction

Drag Force
Thermophoresis

(+) (-)

If the Wafer is Charged, Electrostatic Attraction 
Will Typically Dominate
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Electrostatic Attraction

wafer

 If the particle is neutral and the wafer is charged, force is always 
attractive, irrespective of the sign of the charge

+

-
+

-

+

-
Charged surfaces always attract particles
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Examples of Electrostatic Charge

 Fortunately: High humidity helps in keeping the charge low
 Best practice: All conductive surfaces are grounded (typical 

cleanroom practice)
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Ionizer Bar: To Keep surfaces neutral

 Ionizer is to keep all the 
surfaces which are 
non-conductive and not 
grounded neural, 
especially Plastics!

 Very useful in a 
Cleaning Tool where a 
lot of surfaces are non-
conductive

 Not for Keeping the 
Wafer Neutral!
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Ionizer Driven Discharge Times are 20-30s

Discharge times of 20-30s are too long to keep up with a spinning 
wafer
Good for discharging plastic parts in the chamber

Various
Discharge
Ionizers
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Photo of accumulation of dirt on a charged plastic part 
– no ionizer

 Charge is dependent on 
Material Choice
 HDPE versus PTFE
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Spin Rate Effect On Wafer Surface Charging

0rpm

0.448V

200rpm

0.421V

500rpm

0.864V

1000rpm

1.487V

2000rpm

3.275V

DI (1 l/min, 21°C) for 20s 
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 Ammonium hydroxide results in a lower wafer surface 
charge compared to RTDI at the same conditions
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Wafer Surface Charge vs. Spin Rate: 
RTDI and Ammonium Hydroxide

RTDI, 1 l/min, 21Celsius, 20s
Ammonium Hydroxide, 1 l/min, 21Celsius, 20s
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Charges are removed very easily

 After Cleaning in Single
Wafer:

 After subsequent 
Immersion Cleaning in 
Wet Bench:
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Wafer Charging on Wafer - summary

 Wafer Charging happens due to spinning with non-
conductive liquid
 Wafer Charging can not be prevented with Ionizer
 Wafer Charging can only be prevented with conductive 

liquid
 Wafer Charge from spinning is easily neutralized in 

subsequent operations
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Mechanical Agitation – Non Semiconductor

 Brushes
 Polishing
 Sandblasting
 Megasonics/Ultrasonics
 High Pressure Spray
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Mechanical Cleaning is the most common way to remove particles

Brush Scrubbing is Used in Daily LifeBrush Scrubbing is Used in Daily Life
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Cleaning by Polishing 43
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Cleaning by Sandblasting

Open Air Closed Cabinet
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Brush Scrubbing Can Be Combined With Ultra/Mega Sonics

Even Ultrasonics is used in Daily Life for CleaningEven Ultrasonics is used in Daily Life for Cleaning

Jewelry Cleaner

Ultrasonic toothbrush
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High Pressure Water jet

$500, for consumer use
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Mechanical Agitation – Semiconductor – Single Wafer

 Brushes
 Polishing
 Sandblasting
 Megasonics/Ultrasonics
 High Pressure Spray
 Others: e.g. Ar ion sputter clean
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Brush Cleaning – Single Wafer

48
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“Sandblasting” with CO2 pellets

 Ecosnow (part of Linde/Edwards), Livermore, CA
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Single Wafer Megasonics Clean

Single Wafer MegasonicsSingle Wafer Megasonics
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Mixed Fluid Jet - Atomized Spray Nozzle

Gas Inlet
Liquid Inlet

Exit Orifice

Atomizing zone

Droplet
acceleration
zone

Micro Droplet 
Acceleration 
Technology
Velocity at ~ 30 to 75 
m/sec
Used for Fine Geometry 
cleaning alone or in 
Combination with 
Chemical Undercut
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Gas Velocity Modeling

Gas velocity distribution 
At the nozzle exit

Nozzle
exit

Wafer
surface
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Si Wafer

• Not much velocity 
divergence after 
nozzle exit 
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Any Questions?
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